
Design and Implementation of LDAP Component Matching for
Flexible and Secure Certificate Access in PKI

Sang Seok Lim
IBM Watson Research Center

P.O. Box 218
Yorktown Heights, NY 10598

slim@us.ibm.com

Jong Hyuk Choi
IBM Watson Research Center

P.O. Box 218
Yorktown Heights, NY 10598

jongchoi@us.ibm.com

Kurt D. Zeilenga
IBM Linux Technology Center

Carson City, NV

zeilenga@us.ibm.com

Abstract

Lightweight Directory Access Protocol (LDAP) is the predomi-
nant Internet directory access protocol and hence so is its use in
the Public Key Infrastructure (PKI). This paper presents the design
and implementation of LDAP component matching which enhances
flexibility and security of the LDAP directory service when it is
used for the PKI certificate repositories. The component match-
ing together with the prerequisite ASN.1 awareness enables match-
ing against arbitrary components of certificates and enables match-
ing of composite values at the abstraction layer of the underlying
ASN.1 type definition. This allows searching for certificates with
matching components without the need of providing syntax spe-
cific parsing and matching routines (flexibility), without the need
of extracting the certificate components and storing them into sepa-
rate attributes which become searchable but mutable (security), and
without the need of restructuring Directory Information Tree (DIT)
to support multiple certificates per subject (manageability and per-
formance). In this paper, we describe the architecture, key data
structures, and the proposed methods of enhancing interoperability
and performance of our component matching implementation in the
OpenLDAP open source directory software suite. We also propose
the use of component matching in on-line certificate validation and
in Web services security. Through performance evaluation of the
OpenLDAP component matching, we show that our LDAP compo-
nent matching implementation exhibits the same or higher perfor-
mance compared to the previous approaches.

Keywords

PKI, X.509 Certificate, Certificate Repository, Component Match-
ing, LDAP

1 Introduction

The certificate repository in Public Key Infrastructure (PKI) is a
means of distributing certificates and Certificate Revocation Lists
(CRL) to end entities. It stores certificates and CRLs and provides
efficient access methods to them by harnessing storage means with
communication mechanisms. The directory technology stands out
as the most befitting approach to implementing certificate repos-
itories because the X.509 [14] PKI has been standardized in the
context of the X.500 recommendations as the public key based au-
thentication framework on the X.500 directory.

Lightweight Directory Access Protocol (LDAP) [10] renders
lightweight directory service by providing direct mapping onto
TCP/IP, simple protocol encoding, reduced number of operations,
and string-based encoding of names and attribute values (hence of

assertion values). However, these simplifications come at a price.
Because the string-based encoding in LDAP generally does not
carry the complete structure of abstract values, adding support for
new syntaxes and matching rules requires ad-hoc developments of
syntax parsing and matching routines. X.500 protocols, on the other
hand, avoid this problem by use of ASN.1 (Abstract Syntax Nota-
tion One) [13] encoding rules, in particular, the Basic Encoding
Rules [12].

Though these limitations were not viewed as a significant problem
during LDAP’s early years, it is clear that a number of directory
applications, such as PKI, are significantly hampered by these limi-
tations. For instance, in PKI, a certificate needs to be located based
upon the contents of its components, such as serial number, issuer
name, subject name, and key usage [14]. LDAP search opera-
tions do not understand ASN.1 types in the definition of the certifi-
cate attribute and assertion [14], because attributes and assertions
in LDAP are encoded in octet string with syntax specific encod-
ing rules. Not only would it require exceptional effort to support
matching rules such ascertificateExactMatchandcertificateMatch
as defined in [14], that effort would have to be repeated for each
matching rule introduced to match on a particular component (or
set of components) of a certificate. Because of the large amount of
effort each server vendor must undertake to support each new rule,
few new rules have been introduced to LDAP since its inception.
Applications had to make due with existing rules.

Foreseeing the need to be able to add new syntax and matching rules
without requiring recoding of server implementations, the directory
community engineered a number of extensions to LDAP to address
these limitations. The Generic String Encoding Rules (GSER) [17]
was introduced to be used in describing and implementing new
LDAP string encodings. GSER produces human readable UTF-
8 [32] encoded Unicode [28] character string which preserves the
complete structure of the underlying ASN.1 type and supports reuse
of the existing LDAP string encodings. Provided that an LDAP
server is ASN.1 aware, i.e. it can parse values in ASN.1 encod-
ing rules into its internal representation of ASN.1 value and can
perform matching in that abstraction layer, it is possible to support
matching of arbitrary types without needing ad-hoc developments
of parsing and matching routines.

The component matching [18] mechanism was also introduced to
allow LDAP matching rules to be defined in terms of ASN.1. It in-
troduces rules which allow arbitrary assertions to be made against
selected components values of complex data types such as certifi-
cates. For example, the component matching enables matching
against the selected components of certificates without the need to
define a certificate component specific matching rule and without

requiring custom code to implement that matching rule for the cer-
tificate attributes.

Though the directory community saw GSER and component match-
ing as an eloquent solution to the LDAP syntax and matching rule
limitations, there were some concerns, as most LDAP server im-
plementations were not ASN.1 aware, that its adoption would be
slow. To fulfill immediate needs of PKI applications, another solu-
tion based upon attribute extraction (or “data de-aggregation”) has
been being utilized as a practical remedy. The attribute extraction
method decomposes a certificate into individual components and
stores them into separate, searchable attributes. Certificate Parsing
Server (XPS) [2] automates the attribute extraction process. Al-
though this approach has filled the interoperability gap between
LDAP and PKI, it is considered to be not a workable solution for
PKI applications (and certainly not a workable general solution to
the component matching problem), because it introduced a number
of security and management issues.

In the spring of 2004, IBM undertook an engineering effort to pro-
vide ASN.1 awareness (with GSER, BER, DER support) and com-
ponent matching functionality for the OpenLDAP Project’s Stand-
alone LDAP Daemon (slapd), the directory server component of
OpenLDAP Software [26]. To our knowledge, this is the first imple-
mentation of the component matching technology in a pure LDAP
directory server (second to the View500 [29] directory server from
eB2Bcom [8] which is X.500 based). This paper presents a detailed
and comprehensive description of the design and implementation
of the LDAP component matching for improved PKI support, ex-
tending our previous work [19] which had described component
matching in the context of WS-Security [24]. Another contribution
of this paper is that it proposes key mechanisms to improve per-
formance and interoperability – attribute / matching rule aliasing,
component indexing, and selective component caching. This paper
will also present a preliminary performance evaluation result which
convinces us that the performance of component matching is on par
with or better than those of the syntax specific parsing and attribute
extraction approaches if the optimization mechanisms proposed in
this paper are used. This in fact provides a strong evidential answer
to the debate in the PKI standardization community on whether the
component matching technology can be implemented in LDAP di-
rectory servers timely and efficiently. This paper also discusses on
the possibility of using the component matching for CRL in order to
support on-line certificate status checking using LDAP. It also dis-
cusses on the feasibility of using LDAP component matching for
PKI in Web services security.

This paper is organized as follows. Section 2 introduces the in-
teroperation of LDAP and PKI and describes the deficiencies of
LDAP when it is used for PKI. Section 3 describes the component
matching technology and its use in PKI enabling secure and flexible
certificate access. It also discusses on the possibility of certificate
validation against CRL using LDAP component matching. Section
4 introduces GSER (Generic String Encoding Rules) which facili-
tates the ASN.1 awareness in LDAP when it represents the attribute
and assertion values. In Section 5, we present the design and im-
plementation of the ASN.1 awareness and the component matching
in the OpenLDAP directory server. Section 6 demonstrates the ap-
plication of the component matching for PKI to the security of Web
services. Section 7 shows experimental results of our prototype
implementation of the LDAP component matching and proves that
the component matching can be accomplished without any loss in
performance. Section 8 concludes the paper.

Certificate / CRL
Repository (LDAP)

Registration
Authority (RA)

Certificate
Authority (CA)

publish publish

certificate
CRL

certificate

End Entities

Certificate /
CRL AccessManagement

Transactions Management
Transactions

Figure 1. The Architecture of Public Key Infrastructure.

2 LDAP in PKI

2.1 LDAP Certificate Repository

X.509 certificates and CRLs are commonly distributed by the cer-
tificate repositories. LDAP directories are the most versatile mech-
anism of implementing the certificate repositories. Figure 1 illus-
trates the conceptual interoperation of four entities in PKI. In the
public key registration phase, an end entity sends its identity as well
as its public key to a Registration Authority (RA). If the identity is
validated by the RA, the Certificate Authority (CA) will publish
the end entity’s certificate, storing it in the LDAP directory. Af-
ter that, the published certificate can be retrieved by any properly
authenticated LDAP client. If the issued certificate is revoked by
any reason, the CA is responsible for revoking the certificate by
publishing CRLs to the LDAP directory. LDAP directories serve
as the central place where the end entities not only can download
certificates of others in order to send encrypted messages or verify
digital signatures but also can be informed of the latest certificate
revocation information by downloading CRLs.

2.2 Deficiencies of LDAP Certificate Access

An end entity should be able to send a request to the LDAP cer-
tificate repository searching for a certificate having matched values
in specific components of the certificate. As a principle example,
when it wants to retrieve the certificate having a specific serial num-
ber and issued by a specific CA, it will send an assertion against
serialNumberand issuercomponents as specified incertificateEx-
actMatchof X.509 [14]. However, the need for matching is not
limited only to these two certificate components. An end entity may
want to search for certificates which belong to a subject. It may also
want to restrict the scope of the search for the subject’s certificates
to those having a specific key usage, e.g.nonRepudiation, by using
thekeyUsagecertificate extension. Because LDAP stores attribute
and assertion values in LDAP-specific octet strings which do not
generally preserve structural information of the underlying ASN.1
types, however, it is far from trivial to provide this component level
matching in a generic and flexible way.

X.500 [15] satisfies this demand for component level matching by
allowing matching to be defined at the ASN.1 layer. For instance,
[14] definescertificateExactMatchand certificateMatchmatching

(userCertificate:certificateExactMatch:=12345$o=IBM,c=US)

(a) Syntax Specific Parsing.

(&(x509SerialNumber=12345)(x509KeyUsage=010000000))

(b) Attribute Extraction.

(userCertificate:componentFilterMatch:=
and:{

item:{
component "toBeSigned.subject",
rule distinguishedNameMatch,
value "cn=John Doe,o=IBM,c=US"

}
item:{

component "toBeSigned.extension.*.
extnValue.(2.5.29.15)",

rule bitStringMatch,
value ‘010000000’B

}
}

)

(c) Component Matching.

Figure 2. Three LDAP Certificate Access Methods.

rules by specifying them in ASN.1 data type representations. The
use of ASN.1 specifications is beneficial in the following respects:
1) parsing and matching can be automatically accomplished from
the given ASN.1 type specification without providing ad-hoc rou-
tines; 2) simple but powerful matching rules are derivable from the
strong expressive power of ASN.1, as exemplified in the use ofOP-
TIOANL in certificateMatch; 3) new matching rules can be easily
provided by specifying them in ASN.1.

The rest of this section explains how the current workarounds try
to provide solution to the above mentioned interoperability gap be-
tween LDAP and PKI and introduces the component matching ap-
proach focusing on its advantages over the earlier workarounds.

2.3 LDAP Certificate Access Methods

2.3.1 Syntax Specific Parsing

A brute force approach to providing matching for arbitrary compo-
nents of a certificate against an assertion is to provide certificate-
syntax specific matching rules. For example, it is possible to
manually write a special matching routine that matches the cer-
tificate attribute against the assertion value consisting only ofse-
rialNumberand issuerto implementcertificateExactMatchwhich,
in case of X.500 [15], is meant to be derived automatically from
its ASN.1 specification [14]. In OpenLDAP,certificateExactMatch
is implemented by using certificate decoding libraries provided by
OpenSSL [27]. Figure 2 (a) shows an example filter in which the
predetermined token ’$’ is used to separate the serial number 12345
and the issuer distinguished nameo=IBM,c=US . The server can rec-
ognize the serial number and issuer name by reading two strings
separated by ‘$’. The downside of this approach is obvious. It is
too costly to define syntax specific matching rules for all possible
components and their combinations. It is also difficult to cope with
the extension mechanisms such as a certificate and CRL extensions.

DN: o=IBM,c=US

DN: cn=John Doe,o=IBM,c=US

cn: John Doe
uid: 54321
certificate: MF4…

(a) DIT.

DN: o=IBM,c=US

DN: x509Serial=12345,cn=John
 Doe,o=IBM,c=US

x509Serial: 12345
x509Issuer: o=IBM,c=US
…

(b) DIT of Attribute Extraction.

Figure 3. Example Directory Information Tree (DIT).

2.3.2 Attribute Extraction

To address these deficiencies, Klasen and Gietz [22] proposed an
alternative solution, based on a practical workaround that PKI ad-
ministrators have been using. A set of attributes are extracted from
the certificate and stored as simple, searchable attribute together
with the certificate in a newly created entry which is subordinate
to the original one. For this purpose, they defined a set of 30 at-
tributes [22] for the X.509 certificate. Matching is performed on
the extracted attributes. The example DIT with extracted attributes
is illustrated in Figure 3. DIT (a) in Figure 3 consists of person en-
tries under the baseo=IBM,c=US each of which contains a certificate
attribute. After attributes are extracted, the person entry will have a
new subordinate entry whose DN (Distinguished Name) becomes
x509Serial=12345,cn=John Doe,o=IBM,c=US . The attribute extrac-
tion mechanism not only makes the end entity’s view of a DIT dif-
ferent from the CA’s who published the certificates but also doubles
the number of entries at minimum.

With the attribute extraction mechanism, performing matching
against components is identical to performing matching against at-
tributes as depicted in Figure 2 (b). Although attribute extraction fa-
cilitates matching against components of a complex attribute, it can
be considered as a suboptimal approach in the following respects.
First, matching is performed on the extracted attributes, not on the
certificate itself. Because the contents of the extracted attributes are
mutable, there is non-zero chance of returning a wrong certificate
to a client if the extracted attributes were maliciously forged. It is
strongly recommended for the client to verify the returned certifi-
cate again to ensure strong security. In the server side, on the other
hand, the server administrator must ensure the integrity of a cer-
tificate and the corresponding extracted attributes in order to mini-
mize this security vulnerability. Second, when there are more than
one certificates in a directory entry, one per key usage for example,
it is not possible to pinpoint and return the certificate having the
matching component (i.e. key usage for example again) since the
searched-for attribute is different from the to-be-returned attribute.
The matched value control [4] does not solve this problem, because
an LDAP attribute is set of values, not sequence of values. There-
fore, it is inevitable to transform the DIT structure in designing a
certificate DIT to avoid the need for an additional searching step
in the client [3]. Third, the attribute extraction does not facilitate
matching against a composite assertion value as in X.500. It is not
possible to support a flexible matching as in X.509certificateMatch
without making LDAP directory servers ASN.1 aware.

2.3.3 Certificate Parsing Server

An automatic attribute extraction mechanism was recently pro-
posed. The Certificate Parsing Server (XPS) designed by the Uni-
versity of Salford [3] extends the OpenLDAP directory server in
order to automatically extract and store the certificate components.
Although it can significantly relieve the PKI administrator’s burden,
it does not improve the attribute extraction mechanism not to suffer
from the three disadvantages of described above.

2.3.4 Component Matching

Component matching is recently published in RFC 3687 [18] in an
effort to provide a complete solution to the LDAP - PKI interoper-
ability problem. All attribute syntaxes of X.500 and LDAP are orig-
inally described by ASN.1 type specifications [15, 10]. However,
LDAP uses LDAP specific encodings which does not generally pre-
serves the structural information in the original ASN.1 type, instead
of relying on an ASN.1 encodings. The component matching de-
fines a generic way of enabling matching user selected components
of an attribute value by introducing a new notion of component as-
sertion, component filter, and matching rules for components. With
component matching, it becomes possible to perform matching of
an assertion value against a specific component of a composite at-
tribute value. For example, infrastructure is provided to perform
matching against an arbitrary component of an X.509 certificate,
such asserialNumber, issuer, subject, andkeyUsage. Technical de-
tails of the component matching will be explained in the following
sections. Compared to the attribute extraction approach, component
matching has the following advantages:

1. It does not extract and store certificate components separate
from the certificates themselves. Therefore, it does not in-
crease storage requirements and does not open a potential to
the compromised integrity between a certificate and its ex-
tracted attributes.

2. Matching is performed not on the extracted attributes’ con-
tents but directly on the certificate’s content. It can return only
the matched certificate out of multiple certificates in a user’s
entry if it is used in conjunction with the matched values con-
trol [4].

3. It becomes convenient to provide a complex matching flexi-
bly because matching between attribute and assertion values
is performed at the ASN.1 layer.

3 Component Matching for PKI

3.1 Component Matching and Its Usage

The attribute syntaxes of X.500 are defined in ASN.1 types. The
type is structurally constructed from basic types to composite types
just like C struct definition. Every field of an ASN.1 type is a com-
ponent. Based on ASN.1 types, component matching [18] defines
how to refer to a component within an attribute value and how to
match the referred component against an assertion value. Match-
ing rules are defined for the ASN.1 basic and composite types. It
also defines a new assertion and filter tailored for a component, or
each field of the ASN.1 type. These definitions are based on ASN.1
so that they can be applied to any complex syntax, as long as it is
specified in ASN.1.

The search filter for component matching is a matching rule asser-
tion [10] whose matching rule iscomponentFilterMatchand whose

{ version 2,

serialNumber 12345 ,

signature { algorithm 1.2.840.113549.1.14, parameters NULL},

issuer {{type o, value IBM},{type c, value US}},

validity {notBefore {2004 01 13 18 59}, notAfter {2005 01 13 18 59} },

…

}

GSER encodings

Certificate.toBeSigned :: = SEQUENCE {
version [0] EXPLICIT Version DEFAULT v1,
serialNumber CertificateSerialNumber,
signature AlgorithmIdentifier,
issuer Name,
validity Validity,
subject Name,
subjectPublickKeyInfo subjectPublicKeyInfo,
issuerUniqueID [1] IMPLICIT UniqueIdentifier OPTIOMAL
subjectUniqueID [2] IMPLICIT UniqueIdentifier OPTIONAL
extensions [3] EXPLICIT Extensions OPTIONAL

}

Figure 4. Certificate ASN.1 Specification and GSER Encoding.

assertion value is a component filter. The search filter for compo-
nent matching consists of three parts.

• Component Reference: specifies which component of the at-
tribute value will be matched against the assertion value.

• Matching Rule: specifies which matching rule will be used to
perform matching on the values.

• Value: An assertion value in GSER.

3.2 Certificate Access

Component matching, as introduced in Section 2.3.4, enables
matching of an assertion value against a specific component of a
certificate such asserialNumber, issuer, subject, andkeyUsage. If
a client receives a reference to a certificate consisting of the name
of the issuing CA and its serial number, the client has to search
for the certificate having matchingissuerandserialNumbercom-
ponents in a certificate repository. Alternatively, a client may want
to retrieve communicating party’s certificates, not all of them, but
only the ones for the non-repudiation purpose, by matching its dis-
tinguished name and key usage against thesubjectandkeyUsage
components of the certificate. For instance, the client can make
an LDAP search request having the search filter illustrated in Fig-
ure 2 (c) to search for the certificates ofcn=John Doe,o=IBM,c=US
that are arranged to be used for non-repudiation. The example com-
ponent filter of Figure 2 (c) contains two component assertions, one
for subjectand the other forkeyUsage. The component references
to these components begin withtoBeSignedwhich is a sequence
of certificate components to be digitally signed for immutability.
toBeSigned.serialNumberrefers to theserialNumbercomponent
of a certificate whiletoBeSigned.extension.*.extnValue.(2.5.29.15)
refers to any extension ofkeyUsagetype. In the latter example,
(2.5.29.15)is the object identifier (OID) of thekeyUsageextension.
It is contained inOCTET STRINGof the extnValueof any com-
ponents ofextensionscertificate component. In other words, the
reference means identifying allkeyUsageextension components.

The component matching rule specifies which matching rules will

Component Filter Processing Certificate Attribute Processing

Component Filter
Parser (GSER)

Component Filter
Parser (GSER)

GSER DecoderGSER Decoder

Component
(Assertion)

Matching
Rule

Matching
Rule

Assertion Value
Component
Reference

DER DecoderDER Decoder

Component
Extractor

Component
Extractor

Component
(Attribute)

Component TreeComponent
Caching

Component
Caching

OpenLDAP Server (slapd)

Component
Filter

X.509 Certificate
ASN.1 Specification

eSNACC
Compiler

BER DER GSER

Extractor Decoder Encoder

Matching Rules Indexer

Internal ASN.1 Data Representation

Certificate Module
Loading

LDAP Component
Search Request

1

2

3

5
6

4

CertificateCertificate

Figure 5. Architecture of Component Matching in OpenLDAP.

be used to perform matching a certificate’s component against
an assertion value. Either existing matching rules or newly de-
fined matching rules can be used as the component matching rules.
Matching rules for composite types can be provided by combining
those of their subordinate types.allComponentsMatchimplements
matching at the ASN.1 layer whereas derived matching rules can be
defined to override it with specific syntaxes.

RFC 3687 [18] defines which matching rules can be applied to
each of the ASN.1 types. In the example component filter in Fig-
ure 2 (c), distinguishedNameMatchis used forsubjectand bit-
StringMatchis used forkeyUsage. The component assertion value
is a GSER-encoded value asserted against the component selected
by the component reference. In Figure 2 (c), the valuecn=John
Doe,o=IBM,c=US is the GSER encoded ASN.1UTF8 STRINGand
the value ‘010000000’B is the GSER encoded ASN.1BIT STRING
value.

The client sends a search request containing the component filter to
a component matching enabled LDAP directory server. In response,
the client will be returned with those entries having the matching
certificate if there is any. After checking the authenticity and in-
tegrity of the returned certificate, the client can extract the public
key out of the certificate for further use.

3.3 Certificate Revocation List (CRL) Access

Although certificates were valid at the time when they were issued,
CA must revoke certificates occasionally because the key pair for a
certificate can be compromised or the binding between an identity
and a certificate become invalid. As a result, a certificate should
be validated when it is used. Otherwise, the client might incur not
only incomplete, but also insecure transactions. The CRL mecha-
nism [11] provides a means of performing validation of certificates
against periodically published list of revoked certificates, or Cer-
tificate Revocation List (CRL). A CRL is periodically generated by
the CA and is made available through certificate repositories such
as LDAP directories. Although the CRL mechanism has been care-

fully revised to reduce the CRL download traffic which can degrade
the scalability of PKI significantly, it still requires the end entities
to store CRLs in its local storage in order to facilitate efficient and
off-line operation. On the other hand, on-line certificate validation
protocols are also proposed in order to cope with the on-line end
entities which need more fresh information on certificate validity.
Because the on-line end entities need not store the certificate status
information in its storage, the on-line protocols also eliminate the
requirement for the hefty local certificate storage. Online Certifi-
cate Status Protocol (OCSP) [21] and Simple Certificate Validation
Protocol (SCVP) [9] are two examples of the on-line certificate val-
idation protocols.

We conceive that component matching enabled LDAP can also be
used as an on-line certificate validation protocol. CRL is a se-
quence of pairs of a revoked certificate’s serial number and revoked
time [11]. In order to check status of the certificate, the client needs
to make a component assertion against the serial number of the cer-
tificate under scrutiny. Then, the LDAP server will perform compo-
nent matching on the CRL against the assertion to find the asserted
serial number in the CRL. This is possible with component match-
ing, since the LDAP server understands the structure of the CRL
and is able to compare specific components of the CRL against the
component assertion. In the attribute extraction approach, however,
the serial numbers of all the elements of the revoked certificate list
must be extracted as separate attributes which need to be stored
in the individual subordinate entries. This not only increases the
amount of storage and increases the complexity of managing direc-
tory significantly, but also makes the server vulnerable to malicious
attacks as explained in Section 2.3.4.

With component matching, the whole CRL does not necessarily
have to be downloaded to the client and scanned by the client so
as to save the network bandwidth and the client’s computing power
significantly. Especially for the clients which have limited com-
puting power and low bandwidth such as mobile devices, compo-
nent matching will be very efficient solution for the client to access
PKI. Furthermore, an LDAP server already has been widely used

typedef struct slap_component_desc {
 function_ptr encoder_function;
 function_ptr decoder_function;
 function_ptr extractor_function;
 function_ptr matching_functino;
} ComponentDesc;

typedef struct slap_component_desc {
 function_ptr encoder_function;
 function_ptr decoder_function;
 function_ptr extractor_function;
 function_ptr matching_functino;
} ComponentDesc;

typedef struct slap_component_desc {
 function_ptr encoder_function;
 function_ptr decoder_function;
 function_ptr extractor_function;
 function_ptr matching_functino;
} ComponentDesc;

typedef struct slap_component_desc {
 function_ptr encoder_function;
 function_ptr decoder_function;
 function_ptr extractor_function;
 function_ptr matching_functino;
} ComponentDesc;

typedef struct Certificate {
 ComponentDesc* comp_desc;
 ComponentVersion* version;
 ComponentCertificateSerialNumber serialNumber;
 ComponentAlgorithmIdentifier* signature;
 ComponentName* issuer;
 ComponentValidity* validity;
 ComponentName* subject;
 ComponentSubjectPublicKeyInfo* subjectPublicKeyInfo;
 ComponentUniqueIdentifier issuerUniqueIdentifier;
 ComponentUniqueIdentifier subjectUniqueIdentifier;
 ComponentExtensions* extensions;
} ComponentCertificate;

typedef struct slap_component_desc {
 function_ptr encoder_function;
 function_ptr decoder_function;
 function_ptr extractor_function;
 function_ptr matching_functino;
} ComponentDesc;

typedef ComponentInt
 ComponentCertificateSerialNumber;

typedef struct AlgorithmIdentifier {
 ComponentDesc* comp_desc;
 ComponentOid algorithm;
 ComponentAnyDefinedBy parameters;
} ComponentAlgorithmIdentifier;

typedef struct Int {
 ComponentDesc* comp_desc;
 int value;
} ComponentInt;

typedef struct Oid {
 ComponentDesc* comp_desc;
 AsnOid value;
} ComponentOid;

typedef ComponentAny
 ComponentAnyDefinedBy;

typedef struct Name {
 ComponentDesc* comp_desc;
 enum NameChoiceId {
 NAME_RDNSEQUENCE
 } choiceId;
 union NameChoiceUnion {
 ComponentRDNSequence* rdnSequence;
 } a;
} ComponentName;

typedef ComponentList
 ComponentRDNSequence;

typedef struct List {
 ComponentDesc* comp_desc;
 AsnList comp_list;
} ComponentOid;

typedef struct SubjectPublicKeyInfo {
 ComponentDesc* comp_desc;
 ComponentAlgorithmIdentifier* algorithm;
 ComponentBits subjectPublicKey;
} ComponentSubjectPublicKeyInfo;

typedef struct Bits {
 ComponentDesc* comp_desc;
 AsnBits value;
} ComponentBits;

Figure 6. Certificate Component Tree.

for distributing CRLs and certificates. Hence, if the server can per-
form on-line validity checking over the CRL as well, it will be very
practical and efficient alternative to OCSP which needs additional
software, or an OCSP responder.

In [6], we also propose to structure the internal representation of
CRL as an authenticated data structure such as the Certificate Revo-
cation Tree (CRT) [16] and the authenticated 2-3 tree [23]. Together
with the component matching, it makes certificate validation result
from an LDAP server unforgeable while not requiring to have the
LDAP server as a trusted entity nor to sign every LDAP response
on the fly as in OCSP.

4 GSER (Generic String Encoding Rules)

A native LDAP encoding does not represent structure of an ASN.1
type. Instead, it is either in octet string or in binary. With the LDAP
encoding, as a result, it is difficult to contain the structural informa-
tion of ASN.1 type in its representation. In order to solve this prob-
lem, S. Legg [17] recently proposed GSER (Generic String Encod-
ing Rules). Component matching uses GSER as its basic encoding
for the component assertion value. GSER generates a human read-
able UTF-8 character string encoding of a given ASN.1 specifica-
tion with predetermined set of characters to keep the structure such
as ‘{’, ‘ }’, and ‘,’. It defines UTF8 string encodings at the lowest
level of the ASN.1 built-in types such as INTEGER, BOOLEAN,
and STRING types and then it builds up more complex ASN.1 types
such as SEQUENCE and SET from the lowest level by using the
characters. Thus, the structural information of an ASN.1 specifica-
tion is maintained in encodings so that it can be recovered in the
decoding process easily. By using GSER to store attribute values
instead of the native LDAP encoding, an LDAP server is capable
of identifying the structure of ASN.1 specification of the attribute.
Furthermore, the component filter itself is also encoded in GSER.

Hence, GSER is an essential mechanism to ASN.1 awareness and
component matching.

Figure 4 shows the ASN.1 type specification of atoBeSignedand
its GSER encodings. The certificate is SEQUENCE so that there
are curly braces at the beginning and at the end of its GSER encod-
ings. It hasversion, serialNumber, etc. as its components inside of
SEQUENCE. Within the braces, there isversionand2, or its value,
followed by comma which separates the subsequent field encoding.
GSER defines each basic type’s encoding and then combines them
structurally to a more complex one by using “{”, “,” and “ }”. On
the other hand, a native LDAP encoding does not have any system-
atic rule to construct the structure information of attribute value in
it.

5 Component Matching Implementation in
OpenLDAP

The overall conceptual architecture of the component matching in
the OpenLDAPslapd directory server is illustrated in Figure 5.
Given the ASN.1 specification of the X.509 certificate as an in-
put, the extendedeSNACCASN.1 compiler generates theslapdin-
ternal data representation of the X.509 certificate and their encod-
ing / decoding routines. We extended theeSNACCASN.1 com-
piler [7] to support GSER in addition to the originally supported
BER and DER [7]. It also generates component equality matching
rules, component extract functions, and component indexer func-
tions which will be discussed later in this section in detail. In or-
der to facilitate the integration of the newly defined syntaxes with-
out the need of rebuilding theslapdexecutable, the generated data
structures and routines are built into a module which can be dynam-
ically loaded intoslapd. The overall flows of LDAP component
search is explained as follows;

1. On the client side, a search for components of X.509 certifi-
cate is initiated by the inclusion of theComponentFilterin the
filter of the search request. AComponentFilterconsists of
ComponentAssertions each of which is in turn comprised of
component, rule, andvalue.

2. On the server side, wheneverslapddetects that the search re-
quest containsComponentFilter, it parses the incoming com-
ponent filter to obtain assertion values and component refer-
ences. The assertion values are also converted to the ASN.1
internal representation by the GSER decoder.

3. Retrieve the entry cache to see if the target certificate’s de-
coded component tree is cached. If so, skip the following
steps upto the step 6.

4. If it is not cached, by using an appropriate ASN.1 decoder,
slapddecodes thecertificateattribute into the component tree,
the ASN.1 internal representation, when loading the candi-
date entries containing certificate for matching. Because a
certificate is DER encoded, DER decoder is used to construct
a certificate’s component tree.

5. The component reference is fed into the component extractor
to obtain the component subtree which is referenced bycom-
ponent referenceout of the attribute component tree.

6. The assertion component and the extracted attribute compo-
nent are then matched together by the matching rule corre-
sponding to the component which is generated also by the
extended eSNACC compiler. Matching is performed at the
abstract level using the internal ASN.1 data representation.

The rest of the section provide detailed description of the compo-
nent matching in two steps. After first describing how to make
the OpenLDAP directory server ASN.1 aware in detail, compo-
nent filter processing, aliasing, component indexing, and compo-
nent caching will be described.

5.1 ASN.1 Awareness

5.1.1 eSNACC Compiler

Figure 6 shows the internal data representation of thetoBeSigned
ASN.1 type along with the representations of some of its key com-
ponents. The data structures for this ASN.1 data representation
are automatically generated by the eSNACC compiler from the
given ASN.1 specification oftoBeSigned. The generated data struc-
ture for thetoBeSignedhas data fields corresponding to compo-
nents of thetoBeSignedASN.1 type. Once the internal data struc-
ture for toBeSignedis instantiated, it can be converted to DER
by DEnctoBeSigned() and back to the internal representation by
DDectoBeSigned() .

Component matching can be performed for any composite at-
tributes which are encoded as one of the ASN.1 encoding rules.
In addition to the DER used for a certificate, we have implemented
a GSER backend in the extended eSNACC compiler. GSER can
be used as an LDAP-specific encodings for newly defined attribute
types. With GSER, string-based LDAP-specific encodings can
maintain the structure of their corresponding ASN.1 types. The as-
sertion values in the component filter are also represented in GSER
and the extended eSNACC compiler is used to decode them into
their internal representations.

(userCertificate:componentFilterMatch
:= not:item:{

component “toBeSigned.serialNumber”,
rule integerMatch,
value 12345

}
)

Component Reference

Component Assertion

Component Filter

New Matching Rule

Figure 7. Example Component Filter.

5.1.2 Internal Representation of ASN.1 Type

A new data structure ofslapd is needed to represent an attribute
value as its components because the original data structure for
attribute types does not contain the structural information of an
ASN.1 type in its representation. Every field of an ASN.1 type
is a component which is addressable by a component reference. In
our implementation, the component data structure consists of two
parts: one to store the value of the component; the other to store
a component descriptor which contains information on how to en-
code, decode, and match the values.

The data structure of a component appears as a tree which keeps
the structural information of the original ASN.1 specification using
nodes and arcs. Each component node of the tree not only has data
values but also represents the structural information of the given
ASN.1 specification by having links to subordinate nodes. In the
tree, any node can be referenced by a component reference in order
to perform matching on the corresponding component. Hence, we
need a function to traverse the tree and locate the referenced node.
The ASN.1 compiler also generates component extractor routines
for this purpose.

Figure 6 illustrates the component data structure forCertifi-
cate.toBeSigned. For the convenience of illustration, onlyseri-
alNumber, signature, issuer, andsubjectPublicKeyInfoare shown
with their component subtrees among ten components ofCertifi-
cate.toBeSigned. Let’s look atsubjectPublicKeyInfoin more de-
tail. Its component data structure,ComponentSubjectPublicKey-
Info, contains a pointer to its component descriptor and its own sub-
ordinate components,algorithmandsubjectPublicKey. Algorithm
is represented byComponentAlgorithmIdentifierand subjectPub-
licKey is of the ASN.1BIT STRING type which is represented by
ComponentBits. Leaf nodes of the component tree, such asCompo-
nentBitsandComponentInt, contain the values of the ASN.1 basic
types.

5.1.3 Syntax and Matching Rules

An attribute is described by an attribute type in LDAP. An attribute
type contains two key fields which help to define the attribute as
well as the rules that attribute must follow. The first field is syn-
tax which defines the data format used by the attribute type. The
second field is matching rule which is used by an LDAP server
to compare an attribute value with an assertion value supplied by
LDAP client search or compare operations. Attributes must include
the matching rules in their definition. At least, equality matching
rule should be supported for each attribute type. From the view-
point of an LDAP server, an ASN.1 specification defining a new
attribute type requires a new syntax and its matching rule to be
defined. To fully automate the component matching in which the

Table 1. Attribute Aliasing Table.
Alias Attribute Aliased Attribute Component Reference Matching Rule

x509certificateSerialNumber userCertificate toBeSigned.serialNumber integerMatch
x509certificateIssuer userCertificate toBeSigned.issuer distinguishedNameMatch

composite attribute types are defined in ASN.1, we extended the
eSNACCcompiler to generate the basic equality matching rule of a
given ASN.1 type, orallComponentMatchmatching rule specified
in RFC 3687 [18].allComponentMatchmatching rule evaluates to
true only when the corresponding components of the assertion and
the attribute values are the same. It can be implemented by per-
forming matching from the topmost component which is identified
by the component reference recursively down to the subordinate
components. The generated matching function of each component
can be overridden by other matching functions through a matching
rule refinement table. Therefore, it is possible that a syntax devel-
oper can replace the compiler-generated matching functions with
the existing matching functions ofslapdwhich might be more de-
sirable. In order to support this refining mechanism,slapdchecks
the refinement table whether it is overridden by looking up the ta-
ble, whenever a matching functions are executed.

5.2 Component Matching

5.2.1 Component Assertion and Filter

RFC 3687 [17] defines a new component filter as the means of ref-
erencing a component of a composite attribute and as the means
of representing an assertion value for a composite attribute types.
Component assertion is an assertion about presence or values of
components within an ASN.1 value. It has a component refer-
ence to identify one component within an attribute value. Compo-
nent filter is an expression of component assertion, which evaluates
to eitherTRUE, FALSE, or Undefinedwhile performing match-
ing. Figure 7 illustrate the example component filter. The compo-
nent reference ortoBeSigned.serialNumberidentifies one compo-
nent in the certificate attribute value. In the component reference,
“.” means identifying one of components subordinate to the pre-
ceding component. In the component assertion,rule is followed
by anintegerMatchmatching rule [15] which will be used to com-
pare the following assertion value with the referenced component
of the attribute value. The routines required to support the com-
ponent filter and the component assertion were hand-coded while
the routines for the component assertion values are automatically
generated from a given ASN.1 type.

5.2.2 Attribute / Matching Rule Aliasing

To enable component matching, clients as well as servers need to
support GSER and new component matching rules. However, the
client side changes will be minimal if at all, because the component
filter can be specified by using the existing extensible matching rule
mechanism of LDAPv3 and the component assertion value is rep-
resented as the text centric GSER encoding rules. Especially, the
clients that accept search filters as strings require no changes to uti-
lize component matching other than filling in the necessary compo-
nent filter as the search filter. However, for those clients who have
search filters hard coded in them, we propose an attribute aliasing
mechanism which maps a virtual attribute type to an attribute com-
ponent and a component matching rule and a matching rule aliasing
mechanism which maps a virtual matching rule to a component as-
sertion.

Table 2. X509 Certificate Decoding Time.
d2i X509() ASN.1
OpenSSL Decoder

Time (usec) 32.74 40.20

Attribute alias registers a set of virtual attributes to an LDAP
server. The virtual attributes themselves find correspond-
ing matching rules and component references by looking up
an attribute alias table. The example attribute alias ta-
ble is shown in Table 1. X509certificateSerialNumberat-
tribute is aliased to “userCertificate.toBeSigned.serialNumber”
with the integerMatch matching rule. Hence, the filter
“(x509certificateSerialNumber=12345)” is considered equivalent
to “(userCertificate:ComponentFilter:=item:component userCer-
tificate.toBeSigned.serialNumber, rule caseExactMatch, value
12345)”. With the attribute aliasing, clients only have to form sim-
ple assertions to utilize component matching. Matching rule alias
works in a similar way. An alias matching rule is mapped into the
corresponding component reference and matching rule.

5.2.3 Component Indexing

The maintenance of proper indices is critical to the search perfor-
mance in the Component Matching as much as in the conventional
attribute matching. Inslapd, the attribute indexing is performed by
generating a hash key value of the attribute syntax, matching rule,
and the attribute value and maintain the list of IDs of those entries
having the matching value in the set of attribute values of the in-
dexed attribute.

The component indexing can be specified in the same way as the
attribute indexing, except that the component reference is used to
specify which component of a composite attribute to be indexed. If
the referenced component is a basic ASN.1 type, the indexing pro-
cedure will be the same as the attribute indexing. The indices for
the referenced component are accessed through a hashed value of
the corresponding syntax, matching rule, and value in the index file
for the referenced component of the composite attribute. In OpenL-
DAP, the indexing of the composite component is centered on the
GSER encoding of the component value. The hash key of a com-
ponent value is generated from its GSER encodings together with
its syntax and matching rule. For the SET and SET OF constructed
types, it is required to canonicalize the order of the elements in
the GSER encodings before generating the hashed key value. For
<all> component reference of SET OF and SEQUENCE OF con-
structed types, its is needed to union the indices for each value ele-
ment of SET OF and SEQUENCE OF.

5.2.4 Component Caching

Whenever a certificate is matched against an incoming component
filter, it is repeatedly decoded into the internal representation from
DER. This requires non-negligible CPU cycles as presented in Ta-
ble 2.

In order to eliminate the repeated decoding overhead, we decided
to cache certificates in their decoded form, i.e. in the component

<ds:KeyInfo>
<wsse:SecurityTokenReference>

<ds:X509Data>
<dsext:GenericCertificateReference xmlns:dsext="..." EncodingType="...#XER">

<dsext:CertificateAssertion>
<dsext:serialNumber>8fb2adb53a9056a511d356947cedeec0</dsext:serialNumber>
<dsext:issuer>o=IBM,c=US</dsext:issuer>
<dsext:keyUsage>0</dsext:keyUsage>

</dsext:CertificateAssertion>
</dsext:GenericCertificateReference>

</ds:X509Data>
</wsse:SecurityTokenReference>

</ds:KeyInfo>

(a) XER.

<ds:KeyInfo>
<wsse:SecurityTokenReference>

<ds:X509Data>
<dsext:GenericCertificateReference xmlns:dsext="..." EncodingType="...#GSER">

{ serialNumber "8fb2adb53a9056a511d356947cedeec0", issuer "o=IBM,c=US" , keyUsage ‘010000000’B }
</dsext:GenericCertificateReference>

</ds:X509Data>
</wsse:SecurityTokenReference>

</ds:KeyInfo>

(b) GSER.

Figure 8. Example GenericCertificateReference.

tree structure explained in Section 5.1.2. In the OpenLDAP direc-
tory server, the entry cache is provided to store frequently requested
entries to enable very low latency access [5]. We extended the cur-
rent entry cache to store decoded certificates along with other at-
tributes of the entry. We devised various caching policies for the
entry cache. In early implementations, we decided to cache a de-
coded certificate as a whole, along with its entry in the entry cache.
The size of a certificate is 899Bytes and that of the corresponding
component tree is 3KBytes. Caching all the decoded component
tree consumes more than three times as much memory compared to
the base entry caching. To reduce the memory requirements, we de-
vised an indexing based caching policy. Since it is a common prac-
tice to index those attributes that are likely to be asserted, caching
only those indexed components is a very practical solution to re-
duce the memory requirement. In our experiment, the serial number
component was cached which takes only 148Bytes of memory.

6 Component Matching in WS-Security

SOAP (Simple Object Access Protocol) is a protocol for invoking
methods on servers, services, components, and objects [1]. It is a
way to create widely distributed, complex computing environments
that run over the Internet using existing Internet infrastructure, en-
abling Web service developers to build Web services by linking het-
erogeneous components over the Internet. For interpretability over
heterogeneous platforms, it is built on top of XML and HTTP which
are universally supported in most services. WS-Security is recently
published as the standard for secure Web Services [24]. It provides
a set of mechanisms to help Web Services exchange secure SOAP
message. WS-Security provides a general purpose mechanism for
signing and encrypting parts of a SOAP messages for authenticity
and confidentiality. It also provides a mechanism to associate se-
curity tokens with the SOAP messages to be secured. The security
token can be cryptographically endorsed by a security authority.
It can be either embedded in the SOAP message or acquired ex-
ternally. There are two types of PKI clients in WS-Security: one

directly accesses PKI; the other indirectly accesses it by using ser-
vice proxies such as XML Key Management System (XKMS) [30]
which provides clients with a simple-to-use interface to a PKI so as
to hide the complexities of the underlying infrastructure.

In the X.509 token profile of WS-Security [25], it is defined that the
following three types of token references can be used:

1. Reference to a Subject Key Identifier: value of certificate’s
X.509SubjectKeyIdentifier.

2. Reference to a Security Token: either an internal or an exter-
nal URI reference.

3. Reference to an Issuer and Serial Number: the certificate is-
suer and serial number.

Because it is defined as extensible, any security token can also
be used based on schemas. It is shown in Figure 8 that the
<ds:X509Data> element of<ds:KeyInfo> is used as the security
token.<ds:X509Data> defined in [31] contains various references
such asX509IssuerSerial, X509SubjectName, X509SKI, and so on.
With the ASN.1 awareness and the component matching support in
the OpenLDAP directory server, these references can be used with-
out the need of implementing syntax specific matching rules for
various types of references. It is also possible in<ds:X509Data>
to use elements from external namespace for further flexibility.

Figure 8 shows one such example. Here,GenericCertificateRefer-
enceelement fromdsextnamespace is used to provide a generic
reference mechanism which implementsCertificateMatchin the
X.509 recommendation [14]. The reference consists of a sequence
of certificate attributes,serialNumber, issuer, subjectKeyIdentifier,
authorityKeyIdentifier, certificateValid, privateKeyValid, subject-
PublicKeyAlgID, keyUsage, subjectAltName, policy, pathToName
each of which is defined optional. By using the example reference,
it would be possible to perform security key reference in a very
flexible way. It would be possible to search for a certificate having

0K

2K

4K

6K

8K

10K

12K

14K

16K

18K

20K

1 4 8 15 20

of Clients

o
p
/s
e
c

CM

OpenSSL

XPS

(a) 100K Entries (No Memory Pressure).

0K

1K

2K

3K

4K

1 4 8 15 20

of Clients

o
p
/s
e
c

CM

OpenSSL

XPS

(b) 500K Entries (High Memory Pressure).

Figure 9. The Performance of Three Approaches.

asubjectAltNamewith a specifickeyUsage. Figure 8(a) shows that
the reference is encoded in XML while Figure 8 (b) shows that the
reference is encoded in GSER.

With the component matching enabled LDAP server, the GSER en-
coded reference value can be used as an LDAP assertion value in
a component filter. With the ASN.1 awareness support, the LDAP
server is now capable of understanding the structure of theCertifi-
cateAssertiontype when configured with its ASN.1 definition. Be-
cause encoders / decoders for various encoding rules (GSER, DER,
XER ...) are automatically generated and integrated into the LDAP
server, it is possible to use ASN.1 values encoded in those encoding
rules as an assertion value in an LDAP search operation.

With the ASN.1 aware and component matching enabled LDAP
server, flexible reference formats for X.509 certificates can now be
defined in ASN.1 to configure the LDAP server to understand the
reference. The required matching rules, encoders, and decoders for
the reference type will be automatically generated and integrated to
the LDAP server. This increased flexibility will foster the flexible
use of security token references in the LDAP server by making it
easy to create and update references.

7 Experimental Results

We used MindCraft’s DirectoryMark [20] tools to generate the di-
rectory entries and client scripts containing a list of LDAP opera-
tions. The client scripts were run on an 8-way IBM xSeries 445
server with Intel Xeon 2.8GHz processors and the directory server
was run on an IBM xSeries 445 server with 4 Intel Xeon 2.8Ghz
processors and with 12GB of main memory running SUSE SLES9
(Linux kernel version 2.6.5). We used the transactional backend
(back-bdb) of OpenLDAP version 2.2.22 together with Berkeley
DB 4.3 and OpenSSL 0.9.7 for the evaluation. Two different size
DITs with 100K and 500K entries were used for evaluation. Our in-
tension of using two different size DITs was to observe the through-
put ofslapdwith and without memory pressure. With 100k entries,
all the entries was able to be cached into the DB cache. On the other
hand, with 500k entries, we observed that the server experienced a
number of memory swapping and disk I/O due to memory shortage.
The directory was indexed forcn, sn, email of inetOrgPersonand
for serialNumberandissuerof userCertificate(or the corresponding
extracted attributes in the case of attribute extraction mechanism).

In the experiment, OpenLDAP stand-alone directory server,slapd,
was used as an LDAP certificate repository testbed for all three
methods.Slapdas of OpenLDAP version 2.2.22 supports both the
component matching and the certificate specific matching. The at-
tribute extraction mechanism was tested by using the XPS patch to
OpenLDAP which was contributed to the OpenLDAP project by
University of Salford. XPS was used to automatically generate the
DIT for the attribute extraction. The same version ofslapdwas
tested for all three mechanisms for the LDAP certificate repository.

Fgure 9 (a) shows the throughput of three approaches, varying the
number of clients. With 100k entries, the peak throughput of com-
ponent matching and attribute extraction mechanisms are almost the
same. The certificate-syntax specific matching (OpenSSLdecoder)
exhibits slightly lower performance than the other two methods. We
attribute the reason of lower throughput to longer code path ofslapd
such as normalization and sanity checks of assertion values when it
uses the OpenSSL library. In order to observe the behavior of the
three methods in the presence of memory pressure, we increased the
number of entries to 500K and the database cache size is reduced
from 1GB to 200MB. With this configuration, only small portion
of the entries can be cached and hence the system suffers from fre-
quent memory swapping. Figure 9 (b) shows that the throughput of
all three methods are degraded significantly compared to Figure 9
(a). The peak throughput of component matching is 3250 ops/sec,
significantly degraded from 17,057 ops/sec with no memory con-
straint. The attribute extraction mechanism is hit by even further
performance degradation than the other two mechanisms. This is
because the number of entries becomes doubled by extracting at-
tributes and by having them as separate entries subordinate to the
original ones. This results confirms that the component matching is
a superior approach to the attribute extraction with respect to per-
formance as well as to security and manageability.

8 Conclusion

Although it is a general consensus in the PKI standardization work-
ing group that the component matching is a complete solution to
the LDAP - PKI interoperability problem, it was under debate that
its adoption in LDAP servers might be slow and an alternative so-
lution needed be pursued in the interim. In this paper, we have pre-
sented the design and implementation of the component matching
in OpenLDAPslapd. Our work provided a strong evidence that the

component matching can be implemented in pure LDAP-based di-
rectory servers without exploding complexity and degrading perfor-
mance. Our work also proposed a number of enhancements to the
component matching technology to improve performance and inter-
operability with legacy clients. In this paper, we also proposed the
use of the component matching enabled LDAP as a secure on-line
certificate validation protocol. We further demonstrated the useful-
ness of the component matching in WS-Security as a key applica-
tion. As PKIs are being adopted in larger scale and in more critical
deployments, it becomes more important to provide as complete
a solution as possible, especially when it comes to security. The
component matching technology enables more secure and flexible
implementation of LDAP certificate repositories for PKI without
compromising performance.

9 Availability

The component matching software is included in OpenLDAP
release as a module and can be downloaded athttp://www.
openldap.org/software/download/ . The eSNACC ASN.1
compiler can be obtained from DigitalNet athttp://digitalnet.
com/knowledge/download.htm .

10 References

[1] D. Box and D. Ehne. Simple object access protocol (SOAP).
W3C Note, May 2000.

[2] D. W. Chadwick. Deficiencies in LDAP when used to support
PKI. Comm. of the ACM, 46(3), March 2003.

[3] D. W. Chadwick, E. Ball, and M. V. Sahalayev. Modifying
LDAP to support X.509-based PKIs. In17th Annual IFIP
WG 11.3 Working Conference on Database and Applications
Security, August 2003.

[4] D. W. Chadwick and S. Mullan. Returning matched values
with LDAPv3. RFC 3876, September 2004.

[5] J. H. Choi, H. Franke, and K. D. Zeilenga. Performance of the
OpenLDAP directory server with multiple caching. InPro-
ceedings of International Symposium on Performance Eval-
uation of Computers and Telecommunication Systems, July
2003.

[6] J. H. Choi, S. S. Lim, and K. D. Zeilenga. On-line certificate
revocation via LDAP component matching. To be presented
in DIMACS Workshop on Security of Web Services and E-
Commerce, May 2005.

[7] DigitalNet. Enhanced SNACC ASN.1 software.http://
www.digitalnet.com/knowledge/snacc_home.htm .

[8] eB2Bcom.http://www.e2b2com.com .

[9] T. Freeman, R. Housley, A. Malpani, D. Cooper, and
T. Polk. Simple certificate validation protocol (SCVP).
<draft-ietf-pkix-scvp-18.txt >, Feburuary 2005.

[10] J. Hodges, R. Morgan, and M. Wahl. Lightweight directory
access protocol (v3): Technical specification. RFC 3377,
September 2002.

[11] R. Housley, W. Ford, W. Polk, and D. Solo. Internet X.509
public key infrastructure certificate and CRL profile. RFC
2459, January 1999.

[12] ITU-T Rec. X.690, ASN.1 encoding rules: Specification of
basic encoding rules (BER), canonical encoding rules (CER),
and distinguished encoding rules (DER), 1994.

[13] ITU-T Rec. X.680, Abstract syntax notation one (ASN.1):
Specification of basic notation, December 1997.

[14] ITU-T Rec. X.509, The directory: Public-key and attribute
certificate frameworks, March 2000.

[15] ITU-T Rec. X.500, The directory: Overview of concepts,
models and service, February 2001.

[16] P. C. Kocher. On certificate revocation and validation. In
Proc. of the 2nd Int’l Conference on Financial Cryptography
(Lecture Notes in Computer Science, Vol. 1465), pages 172–
177, 1998.

[17] S. Legg. Generic string encoding rules. RFC 3641, October
2003.

[18] S. Legg. X.500 and LDAP component matching rules. RFC
3687, February 2004.

[19] S. S. Lim, J. H. Choi, and K. D. Zeilenga. Secure and flexible
certificate access in WS-Security through LDAP component
matching. InACM Workshop on Secure Web Services held in
conjunction with the 11th ACM Conference on Computer and
Communications Security, October 2004.

[20] Mindcraft. DirectoryMark. http://www.mindcraft.com/
directorymark/ .

[21] M. Myers, R. Ankney, A. Malpani, and C. Adams. Internet
X.509 public key infrastructure online certificate status proto-
col - OCSP. RFC 2560, June 1999.

[22] N. Klasen and P. Gietz. Internet X.509 public key infrastruc-
ture lightweight directory access protocol schema for X.509
certificates, <draft-ietf-pkix-ldap-pkc-schema-01.
txt >, October 2004.

[23] M. Naor and K. Nissim. Certificate revocation and certifi-
cate update. InProc. of the 7th USENIX Security Symposium,
pages 217–228, January 1998.

[24] OASIS. Web services security: SOAP message security 1.0
(WS-Security 2004). OASIS Standard 200401, March 2004.

[25] OASIS. Web services security: X.509 certificate token profile.
OASIS Standard 200401, January 2004.

[26] OpenLDAP.http://www.openldap.org .

[27] OpenSSL.http://www.openssl.org .

[28] The Unicode Consortium.The Unicode Standard, Version 4.0.
Addison-Wesley, Boston, 2003.

[29] View500. http://www.view500.com .

[30] W3C. XML key management specification (XKMS). W3C
Standard, March 2001.

[31] W3C. XML - signature syntax and processing. W3C Stan-
dard, February 2002.

[32] F. Yergeau. UTF-8, a transformation format of ISO 10646.
RFC 3629, November 2003.

