
OpenLDAP Software 2.5 Administrator's Guide
19 January 2022

Table of Contents
Table of Contents...1

Preface..1
Copyright...1
Scope of this Document...1
Acknowledgments..2
Amendments..2
About this document..3

1. Introduction to OpenLDAP Directory Services...3
1.1. What is a directory service?..3
1.2. What is LDAP?...6
1.3. When should I use LDAP?...6
1.4. When should I not use LDAP?...6
1.5. How does LDAP work?..7
1.6. What about X.500?...7
1.7. What is the difference between LDAPv2 and LDAPv3?...7
1.8. LDAP vs RDBMS..9
1.9. What is slapd and what can it do?...10
1.10. What is lloadd and what can it do?...11

2. A Quick-Start Guide...15

3. The Big Picture - Configuration Choices..15
3.1. Local Directory Service..15
3.2. Local Directory Service with Referrals..15
3.3. Replicated Directory Service..16
3.4. Distributed Local Directory Service...17

4. Building and Installing OpenLDAP Software..17
4.1. Obtaining and Extracting the Software...17
4.2. Prerequisite software...17

4.2.1...18
4.2.2...18
4.2.3...18
4.2.4. Database Software...18
4.2.5. Threads..18
4.2.6. TCP Wrappers...19

4.3. Running configure..19
4.4. Building the Software...20
4.5. Testing the Software...20
4.6. Installing the Software..21

5. Configuring slapd..21
5.1. Configuration Layout..23
5.2. Configuration Directives...24

5.2.1. cn=config...25
5.2.2. cn=module...26

OpenLDAP Software 2.5 Administrator's Guide

i

Table of Contents
5. Configuring slapd

5.2.3. cn=schema...27
5.2.4. Backend-specific Directives..27
5.2.5. Database-specific Directives...32
5.2.6. MDB Backend Directives...33
5.2.7. MDB Database Directives...36

5.3. Configuration Example...38
5.4. Converting old style slapd.conf(5) file to cn=config format..39
5.5. Recovering from a broken configuration..39

5.5.1. Generate an ldif version of the configuration database and reload from that.......................39
5.5.2. Modify config in-place..40
5.5.3. Recover with plain back-ldif...41

6. The slapd Configuration File...41
6.1. Configuration File Format..42
6.2. Configuration File Directives...42

6.2.1. Global Directives...44
6.2.2. General Backend Directives..45
6.2.3. General Database Directives...49
6.2.4. MDB Backend Directives...50
6.2.5. MDB Database Directives...53

6.3. Configuration File Example..55

7. Running slapd..55
7.1. Command-Line Options...57
7.2. Starting slapd..57
7.3. Stopping slapd...59

8. Access Control...59
8.1. Introduction...59
8.2. Access Control via Static Configuration...60

8.2.1. What to control access to...61
8.2.2. Who to grant access to...62
8.2.3. The access to grant..62
8.2.4. Access Control Evaluation..63
8.2.5. Access Control Examples..64

8.3. Access Control via Dynamic Configuration...65
8.3.1. What to control access to...66
8.3.2. Who to grant access to...67
8.3.3. The access to grant..67
8.3.4. Access Control Evaluation..68
8.3.5. Access Control Examples..69
8.3.6. Access Control Ordering...70

8.4. Access Control Common Examples...70
8.4.1. Basic ACLs..71
8.4.2. Matching Anonymous and Authenticated users..71
8.4.3. Controlling rootdn access..72
8.4.4. Managing access with Groups...73

OpenLDAP Software 2.5 Administrator's Guide

ii

Table of Contents
8. Access Control

8.4.5. Granting access to a subset of attributes...73
8.4.6. Allowing a user write to all entries below theirs...73
8.4.7. Allowing entry creation...75
8.4.8. Tips for using regular expressions in Access Control...76
8.4.9. Granting and Denying access based on security strength factors (ssf).................................76
8.4.10. When things aren't working as expected...77

8.5. Sets - Granting rights based on relationships..77
8.5.1. Groups of Groups..78
8.5.2. Group ACLs without DN syntax...79
8.5.3. Following references...81

9. Limits...81
9.1. Introduction...81
9.2. Soft and Hard limits..81
9.3. Global Limits..82

9.3.1. Special Size Limits..82
9.4. Per-Database Limits..83

9.4.1. Specify who the limits apply to...83
9.4.2. Specify time limits...83
9.4.3. Specifying size limits..84

9.5. Example Limit Configurations...84
9.5.1. Simple Global Limits..84
9.5.2. Global Hard and Soft Limits...84
9.5.3. Giving specific users larger limits...84
9.5.4. Limiting who can do paged searches..85

9.6. Glued/Subordinate database configurations...85
9.7. Further Information...87

10. Database Creation and Maintenance Tools..87
10.1. Creating a database over LDAP..88
10.2. Creating a database off-line..89

10.2.1. The slapadd program...90
10.2.2. The slapindex program..90
10.2.3. The slapcat program..90

10.3. The LDIF text entry format...93

11. Backends..93
11.1. LDAP..93

11.1.1. Overview...93
11.1.2. back-ldap Configuration..94
11.1.3. Further Information...94

11.2. LDIF..94
11.2.1. Overview...94
11.2.2. back-ldif Configuration...95
11.2.3. Further Information...95

11.3. LMDB...95
11.3.1. Overview...95

OpenLDAP Software 2.5 Administrator's Guide

iii

Table of Contents
11. Backends

11.3.2. back-mdb Configuration..96
11.3.3. Further Information...96

11.4. Metadirectory..96
11.4.1. Overview...96
11.4.2. back-meta Configuration...96
11.4.3. Further Information...96

11.5. Monitor...96
11.5.1. Overview...97
11.5.2. back-monitor Configuration..98
11.5.3. Further Information...98

11.6. Null...98
11.6.1. Overview...98
11.6.2. back-null Configuration..98
11.6.3. Further Information...99

11.7. Passwd..99
11.7.1. Overview...99
11.7.2. back-passwd Configuration...99
11.7.3. Further Information...99

11.8. Perl..99
11.8.1. Overview...100
11.8.2. back-perl Configuration..100
11.8.3. Further Information...100

11.9. Relay...100
11.9.1. Overview...100
11.9.2. back-relay Configuration...100
11.9.3. Further Information...100

11.10. SQL...100
11.10.1. Overview...101
11.10.2. back-sql Configuration..102
11.10.3. Further Information...103

12. Overlays...104
12.1. Access Logging...104

12.1.1. Overview...104
12.1.2. Access Logging Configuration..105
12.1.3. Further Information...105

12.2. Audit Logging...105
12.2.1. Overview...106
12.2.2. Audit Logging Configuration..106
12.2.3. Further Information...106

12.3. Chaining..107
12.3.1. Overview...107
12.3.2. Chaining Configuration...108
12.3.3. Handling Chaining Errors...108
12.3.4. Read-Back of Chained Modifications...108
12.3.5. Further Information...108

12.4. Constraints..108

OpenLDAP Software 2.5 Administrator's Guide

iv

Table of Contents
12. Overlays

12.4.1. Overview...109
12.4.2. Constraint Configuration...109
12.4.3. Further Information...109

12.5. Dynamic Directory Services...109
12.5.1. Overview...109
12.5.2. Dynamic Directory Service Configuration..111
12.5.3. Further Information...111

12.6. Dynamic Groups...111
12.6.1. Overview...111
12.6.2. Dynamic Group Configuration..111

12.7. Dynamic Lists...111
12.7.1. Overview...111
12.7.2. Dynamic List Configuration..113
12.7.3. Further Information...113

12.8. Reverse Group Membership Maintenance..113
12.8.1. Overview...113
12.8.2. Member Of Configuration...114
12.8.3. Further Information...114

12.9. The Proxy Cache Engine..114
12.9.1. Overview...115
12.9.2. Proxy Cache Configuration...117
12.9.3. Further Information...117

12.10. Password Policies...117
12.10.1. Overview...118
12.10.2. Password Policy Configuration...120
12.10.3. Further Information...120

12.11. Referential Integrity..120
12.11.1. Overview...120
12.11.2. Referential Integrity Configuration...122
12.11.3. Further Information...122

12.12. Return Code..122
12.12.1. Overview...122
12.12.2. Return Code Configuration...123
12.12.3. Further Information...123

12.13. Rewrite/Remap...123
12.13.1. Overview...123
12.13.2. Rewrite/Remap Configuration..123
12.13.3. Further Information...123

12.14. Sync Provider..123
12.14.1. Overview...123
12.14.2. Sync Provider Configuration...124
12.14.3. Further Information...124

12.15. Translucent Proxy...124
12.15.1. Overview...124
12.15.2. Translucent Proxy Configuration..126
12.15.3. Further Information...126

12.16. Attribute Uniqueness..126

OpenLDAP Software 2.5 Administrator's Guide

v

Table of Contents
12. Overlays

12.16.1. Overview...126
12.16.2. Attribute Uniqueness Configuration...127
12.16.3. Further Information...127

12.17. Value Sorting..127
12.17.1. Overview...127
12.17.2. Value Sorting Configuration...128
12.17.3. Further Information...128

12.18. Overlay Stacking...129
12.18.1. Overview...129
12.18.2. Example Scenarios..131

13. Schema Specification..131
13.1. Distributed Schema Files..131
13.2. Extending Schema..132

13.2.1. Object Identifiers...133
13.2.2. Naming Elements..133
13.2.3. Local schema file...133
13.2.4. Attribute Type Specification...136
13.2.5. Object Class Specification...137
13.2.6. OID Macros...139

14. Security Considerations..139
14.1. Network Security..139

14.1.1. Selective Listening..139
14.1.2. IP Firewall...139
14.1.3. TCP Wrappers...140

14.2. Data Integrity and Confidentiality Protection...140
14.2.1. Security Strength Factors..140

14.3. Authentication Methods..140
14.3.1. "simple" method..141
14.3.2. SASL method..141

14.4. Password Storage..142
14.4.1. SSHA password storage scheme...142
14.4.2. CRYPT password storage scheme..142
14.4.3. MD5 password storage scheme...142
14.4.4. SMD5 password storage scheme...143
14.4.5. SHA password storage scheme...143
14.4.6. SASL password storage scheme..143

14.5. Pass-Through authentication...143
14.5.1. Configuring slapd to use an authentication provider...144
14.5.2. Configuring saslauthd..144
14.5.3. Testing pass-through authentication..147

15. Using SASL..147
15.1. SASL Security Considerations...148
15.2. SASL Authentication..148

15.2.1. GSSAPI...149

OpenLDAP Software 2.5 Administrator's Guide

vi

Table of Contents
15. Using SASL

15.2.2. KERBEROS_V4...150
15.2.3. DIGEST-MD5...151
15.2.4. EXTERNAL..152
15.2.5. Mapping Authentication Identities..153
15.2.6. Direct Mapping..153
15.2.7. Search-based mappings...155

15.3. SASL Proxy Authorization...155
15.3.1. Uses of Proxy Authorization...156
15.3.2. SASL Authorization Identities..156
15.3.3. Proxy Authorization Rules..159

16. Using TLS..159
16.1. TLS Certificates..159

16.1.1. Server Certificates...159
16.1.2. Client Certificates..159

16.2. TLS Configuration..159
16.2.1. Server Configuration...161
16.2.2. Client Configuration..163

17. Constructing a Distributed Directory Service..163
17.1. Subordinate Knowledge Information..163
17.2. Superior Knowledge Information...164
17.3. The ManageDsaIT Control...165

18. Replication...165
18.1. Replication Technology..165

18.1.1. LDAP Sync Replication..168
18.2. Deployment Alternatives..169

18.2.1. Delta-syncrepl replication...169
18.2.2. N-Way Multi-Provider Replication...170
18.2.3. Mirror mode replication..171
18.2.4. Syncrepl Proxy Mode..171

18.3. Configuring the different replication types...171
18.3.1. Syncrepl...173
18.3.2. Delta-syncrepl...175
18.3.3. N-Way Multi-Provider..177
18.3.4. Mirror mode..179
18.3.5. Syncrepl Proxy..185

19. Maintenance..185
19.1. Directory Backups..185
19.2. Checkpointing...185
19.3. Migration..187

20. Monitoring...187
20.1. Monitor configuration via cn=config(5)...187
20.2. Monitor configuration via slapd.conf(5)...188

OpenLDAP Software 2.5 Administrator's Guide

vii

Table of Contents
20. Monitoring

20.3. Accessing Monitoring Information...189
20.4. Monitor Information...190

20.4.1. Backends...191
20.4.2. Connections...191
20.4.3. Databases...191
20.4.4. Listener..192
20.4.5. Log...192
20.4.6. Operations...192
20.4.7. Overlays...193
20.4.8. SASL...193
20.4.9. Statistics...193
20.4.10. Threads..193
20.4.11. Time...194
20.4.12. TLS..194
20.4.13. Waiters...195

21. Load Balancing with lloadd...195
21.1. Overview...195
21.2. When to use the OpenLDAP load balancer..195
21.3. Runtime configurations...196
21.4. Build Notes...196
21.5. Sample Runtime..196
21.6. Configuring load balancer...196

21.6.1. Common configuration options...197
21.6.2. Sample backend config...199

22. Tuning..199
22.1. Performance Factors...199

22.1.1. Memory...199
22.1.2. Disks..199
22.1.3. Network Topology..199
22.1.4. Directory Layout Design...199
22.1.5. Expected Usage...199

22.2. Indexes..199
22.2.1. Understanding how a search works...200
22.2.2. What to index..200
22.2.3. Presence indexing..200
22.2.4. Equality indexing..201
22.2.5. Substring indexing...201

22.3. Logging...201
22.3.1. What log level to use...201
22.3.2. What to watch out for..201
22.3.3. Improving throughput..202

22.4. slapd(8) Threads..203

OpenLDAP Software 2.5 Administrator's Guide

viii

Table of Contents
23. Troubleshooting..203

23.1. User or Software errors?...203
23.2. Checklist...203
23.3. OpenLDAP Bugs..204
23.4. 3rd party software error..204
23.5. How to contact the OpenLDAP Project..204
23.6. How to present your problem...204
23.7. Debugging slapd(8)...204
23.8. Commercial Support...205

A. Changes Since Previous Release...205
A.1. New Guide Sections...205
A.2. New Features and Enhancements in 2.5..205

A.2.1. Better cn=config functionality..205
A.2.2. Better cn=schema functionality..205
A.2.3. More sophisticated Syncrepl configurations..205
A.2.4. Replicating slapd Configuration (syncrepl and cn=config)...205
A.2.5. More extensive TLS configuration control..206
A.2.6. Performance enhancements..206
A.2.7. New overlays..206
A.2.8. New features in existing Overlays..206
A.2.9. New features in slapd...206
A.2.10. New features in libldap...206
A.2.11. New clients, tools and tool enhancements..206
A.2.12. New build options...206

A.3. Obsolete Features Removed From 2.5...206
A.3.1. back-bdb and back-hdb...207

B. Upgrading from 2.4.x...207
B.1. cn=config olc* attributes..207
B.2. ppolicy overlay...207
B.3. unique overlay..207
B.4. ldap and meta backends..208
B.5. shell backend..208
B.6. perl and sql backends...208
B.7. hdb and bdb backends..208
B.8. mdb backend..208
B.9. Client utility changes..209

C. Common errors encountered when using OpenLDAP Software..209
C.1. Common causes of LDAP errors...209

C.1.1. ldap_*: Can't contact LDAP server..209
C.1.2. ldap_*: No such object...210
C.1.3. ldap_*: Can't chase referral..210
C.1.4. ldap_*: server is unwilling to perform..210
C.1.5. ldap_*: Insufficient access..211
C.1.6. ldap_*: Invalid DN syntax..211
C.1.7. ldap_*: Referral hop limit exceeded...211

OpenLDAP Software 2.5 Administrator's Guide

ix

Table of Contents
C. Common errors encountered when using OpenLDAP Software

C.1.8. ldap_*: operations error..211
C.1.9. ldap_*: other error..211
C.1.10. ldap_add/modify: Invalid syntax..211
C.1.11. ldap_add/modify: Object class violation..213
C.1.12. ldap_add: No such object..213
C.1.13. ldap add: invalid structural object class chain..214
C.1.14. ldap_add: no structuralObjectClass operational attribute...214
C.1.15. ldap_add/modify/rename: Naming violation..215
C.1.16. ldap_add/delete/modify/rename: no global superior knowledge......................................215
C.1.17. ldap_bind: Insufficient access...215
C.1.18. ldap_bind: Invalid credentials...216
C.1.19. ldap_bind: Protocol error..216
C.1.20. ldap_modify: cannot modify object class...216
C.1.21. ldap_sasl_interactive_bind_s: ..216
C.1.22. ldap_sasl_interactive_bind_s: No such Object...216
C.1.23. ldap_sasl_interactive_bind_s: No such attribute..217
C.1.24. ldap_sasl_interactive_bind_s: Unknown authentication method.....................................217
C.1.25. ldap_sasl_interactive_bind_s: Local error (82)..217
C.1.26. ldap_search: Partial results and referral received...217
C.1.27. ldap_start_tls: Operations error..217

C.2. Other Errors..217
C.2.1. ber_get_next on fd X failed errno=34 (Numerical result out of range)..............................217
C.2.2. ber_get_next on fd X failed errno=11 (Resource temporarily unavailable).......................218
C.2.3. daemon: socket() failed errno=97 (Address family not supported)....................................218
C.2.4. GSSAPI: gss_acquire_cred: Miscellaneous failure; Permission denied;...........................218
C.2.5. access from unknown denied..219
C.2.6. ldap_read: want=# error=Resource temporarily unavailable...219
C.2.7. `make test' fails...220
C.2.8. ldap_*: Internal (implementation specific) error (80) - additional info: entry index

 delete failed..220
C.2.9. ldap_sasl_interactive_bind_s: Can't contact LDAP server (-1)..221

D. Recommended OpenLDAP Software Dependency Versions...221
D.1. Dependency Versions..223

E. Real World OpenLDAP Deployments and Examples..225

F. OpenLDAP Software Contributions...225
F.1. Client APIs...225

F.1.1. ldapc++..225
F.1.2. ldaptcl..225

F.2. Overlays..225
F.2.1. acl..225
F.2.2. addpartial...225
F.2.3. allop...225
F.2.4. autogroup...225
F.2.5. comp_match..225

OpenLDAP Software 2.5 Administrator's Guide

x

Table of Contents
F. OpenLDAP Software Contributions

F.2.6. denyop...225
F.2.7. dsaschema...226
F.2.8. lastmod..226
F.2.9. nops...226
F.2.10. nssov..226
F.2.11. passwd...226
F.2.12. proxyOld...226
F.2.13. smbk5pwd...226
F.2.14. trace...226
F.2.15. usn...226

F.3. Tools...226
F.3.1. Statistic Logging...226

F.4. SLAPI Plugins..227
F.4.1. addrdnvalues...229

G. Configuration File Examples..229
G.1. slapd.conf...229
G.2. ldap.conf...229
G.3. a-n-other.conf...231

H. LDAP Result Codes...231
H.1. Non-Error Result Codes...231
H.2. Result Codes..231
H.3. success (0)..231
H.4. operationsError (1)...231
H.5. protocolError (2)..232
H.6. timeLimitExceeded (3)..232
H.7. sizeLimitExceeded (4)...232
H.8. compareFalse (5)..232
H.9. compareTrue (6)...232
H.10. authMethodNotSupported (7)..232
H.11. strongerAuthRequired (8)..232
H.12. referral (10)..232
H.13. adminLimitExceeded (11)..233
H.14. unavailableCriticalExtension (12)..233
H.15. confidentialityRequired (13)..233
H.16. saslBindInProgress (14)...233
H.17. noSuchAttribute (16)..233
H.18. undefinedAttributeType (17)...233
H.19. inappropriateMatching (18)...233
H.20. constraintViolation (19)...233
H.21. attributeOrValueExists (20)...233
H.22. invalidAttributeSyntax (21)...233
H.23. noSuchObject (32)...234
H.24. aliasProblem (33)...234
H.25. invalidDNSyntax (34)..234
H.26. aliasDereferencingProblem (36)..234

OpenLDAP Software 2.5 Administrator's Guide

xi

Table of Contents
H. LDAP Result Codes

H.27. inappropriateAuthentication (48)...234
H.28. invalidCredentials (49)...234
H.29. insufficientAccessRights (50)..234
H.30. busy (51)..234
H.31. unavailable (52)..234
H.32. unwillingToPerform (53)...234
H.33. loopDetect (54)..235
H.34. namingViolation (64)...235
H.35. objectClassViolation (65)..235
H.36. notAllowedOnNonLeaf (66)..235
H.37. notAllowedOnRDN (67)..235
H.38. entryAlreadyExists (68)...235
H.39. objectClassModsProhibited (69)..235
H.40. affectsMultipleDSAs (71)..235
H.41. other (80)..237

I. Glossary..237
I.1. Terms...240
I.2. Related Organizations..241
I.3. Related Products..241
I.4. References...245

J. Generic configure Instructions..249

K. OpenLDAP Software Copyright Notices...249
K.1. OpenLDAP Copyright Notice..249
K.2. Additional Copyright Notices..250
K.3. University of Michigan Copyright Notice...251

L. OpenLDAP Public License

OpenLDAP Software 2.5 Administrator's Guide

xii

Preface

Copyright

Copyright 1998-2013, The OpenLDAP Foundation, All Rights Reserved.

Copyright 1992-1996, Regents of the University of Michigan, All Rights Reserved.

This document is considered a part of OpenLDAP Software. This document is subject to terms of conditions
set forth in OpenLDAP Software Copyright Notices and the OpenLDAP Public License. Complete copies of
the notices and associated license can be found in Appendix K and L, respectively.

Portions of OpenLDAP Software and this document may be copyright by other parties and/or subject to
additional restrictions. Individual source files should be consulted for additional copyright notices.

Scope of this Document

This document provides a guide for installing OpenLDAP Software 2.5 (http://www.openldap.org/software/)
on UNIX (and UNIX-like) systems. The document is aimed at experienced system administrators with basic
understanding of LDAP-based directory services.

This document is meant to be used in conjunction with other OpenLDAP information resources provided with
the software package and on the project's site (http://www.OpenLDAP.org/) on the World Wide Web. The site
makes available a number of resources.

OpenLDAP Resources

Resource URL
Document Catalog http://www.OpenLDAP.org/doc/
Frequently Asked Questions http://www.OpenLDAP.org/faq/
Issue Tracking System http://www.OpenLDAP.org/its/
Mailing Lists http://www.OpenLDAP.org/lists/
Manual Pages http://www.OpenLDAP.org/software/man.cgi
Software Pages http://www.OpenLDAP.org/software/
Support Pages http://www.OpenLDAP.org/support/

This document is not a complete reference for OpenLDAP software; the manual pages are the definitive
documentation. For best results, you should use the manual pages that were installed on your system with
your version of OpenLDAP software so that you're looking at documentation that matches the code. While the
OpenLDAP web site also provides the manual pages for convenience, you can not assume that they
correspond to the particular version you're running.

Acknowledgments

The OpenLDAP Project is comprised of a team of volunteers. This document would not be possible without
their contribution of time and energy.

1

https://www.openldap.org/foundation/
https://www.umich.edu/
http://www.openldap.org/software/
http://www.OpenLDAP.org/
http://www.OpenLDAP.org/doc/
http://www.OpenLDAP.org/faq/
http://www.OpenLDAP.org/its/
http://www.OpenLDAP.org/lists/
http://www.OpenLDAP.org/software/man.cgi
http://www.OpenLDAP.org/software/
http://www.OpenLDAP.org/support/
https://www.openldap.org/project/

The OpenLDAP Project would also like to thank the University of Michigan LDAP Team for building the
foundation of LDAP software and information to which OpenLDAP Software is built upon. This document is
based upon University of Michigan document: The SLAPD and SLURPD Administrators Guide.

Amendments

Suggested enhancements and corrections to this document should be submitted using the OpenLDAP Issue
Tracking System (http://www.openldap.org/its/).

About this document

This document was produced using the Simple Document Format (SDF) documentation system
(http://search.cpan.org/src/IANC/sdf-2.001/doc/catalog.html) developed by Ian Clatworthy. Tools for SDF are
available from CPAN (http://search.cpan.org/search?query=SDF&mode=dist).

OpenLDAP Software 2.5 Administrator's Guide

2

https://web.archive.org/web/20160302011357/http://www.umich.edu/~dirsvcs/ldap/ldap.html
https://web.archive.org/web/20170809071245/http://www.umich.edu/~dirsvcs/ldap/doc/guides/slapd/guide.pdf
https://www.openldap.org/
http://www.openldap.org/its/
http://search.cpan.org/src/IANC/sdf-2.001/doc/catalog.html
https://www.cpan.org/
http://search.cpan.org/search?query=SDF&mode=dist

1. Introduction to OpenLDAP Directory Services
This document describes how to build, configure, and operate OpenLDAP Software to provide directory
services. This includes details on how to configure and run the Standalone LDAP Daemon, slapd(8). It is
intended for new and experienced administrators alike. This section provides a basic introduction to directory
services and, in particular, the directory services provided by slapd(8). This introduction is only intended to
provide enough information so one might get started learning about LDAP, X.500, and directory services.

1.1. What is a directory service?

A directory is a specialized database specifically designed for searching and browsing, in additional to
supporting basic lookup and update functions.

Note: A directory is defined by some as merely a database optimized for read access. This definition, at best,
is overly simplistic.

Directories tend to contain descriptive, attribute-based information and support sophisticated filtering
capabilities. Directories generally do not support complicated transaction or roll-back schemes found in
database management systems designed for handling high-volume complex updates. Directory updates are
typically simple all-or-nothing changes, if they are allowed at all. Directories are generally tuned to give quick
response to high-volume lookup or search operations. They may have the ability to replicate information
widely in order to increase availability and reliability, while reducing response time. When directory
information is replicated, temporary inconsistencies between the consumers may be okay, as long as
inconsistencies are resolved in a timely manner.

There are many different ways to provide a directory service. Different methods allow different kinds of
information to be stored in the directory, place different requirements on how that information can be
referenced, queried and updated, how it is protected from unauthorized access, etc. Some directory services
are local, providing service to a restricted context (e.g., the finger service on a single machine). Other services
are global, providing service to a much broader context (e.g., the entire Internet). Global services are usually
distributed, meaning that the data they contain is spread across many machines, all of which cooperate to
provide the directory service. Typically a global service defines a uniform namespace which gives the same
view of the data no matter where you are in relation to the data itself.

A web directory, such as provided by the Curlie Project <https://curlie.org>, is a good example of a directory
service. These services catalog web pages and are specifically designed to support browsing and searching.

While some consider the Internet Domain Name System (DNS) is an example of a globally distributed
directory service, DNS is not browsable nor searchable. It is more properly described as a globally distributed
lookup service.

1.2. What is LDAP?

LDAP stands for Lightweight Directory Access Protocol. As the name suggests, it is a lightweight protocol
for accessing directory services, specifically X.500-based directory services. LDAP runs over TCP/IP or other
connection oriented transfer services. LDAP is an IETF Standard Track protocol and is specified in
"Lightweight Directory Access Protocol (LDAP) Technical Specification Road Map" RFC4510.

This section gives an overview of LDAP from a user's perspective.

3

https://www.openldap.org/
https://curlie.org
https://www.ietf.org/
https://www.rfc-editor.org/rfc/rfc4510.txt

What kind of information can be stored in the directory? The LDAP information model is based on entries.
An entry is a collection of attributes that has a globally-unique Distinguished Name (DN). The DN is used to
refer to the entry unambiguously. Each of the entry's attributes has a type and one or more values. The types
are typically mnemonic strings, like "cn" for common name, or "mail" for email address. The syntax of
values depend on the attribute type. For example, a cn attribute might contain the value Babs Jensen. A mail
attribute might contain the value "babs@example.com". A jpegPhoto attribute would contain a photograph in
the JPEG (binary) format.

How is the information arranged? In LDAP, directory entries are arranged in a hierarchical tree-like structure.
Traditionally, this structure reflected the geographic and/or organizational boundaries. Entries representing
countries appear at the top of the tree. Below them are entries representing states and national organizations.
Below them might be entries representing organizational units, people, printers, documents, or just about
anything else you can think of. Figure 1.1 shows an example LDAP directory tree using traditional naming.

OpenLDAP Software 2.5 Administrator's Guide

4

Figure 1.1: LDAP directory tree (traditional naming)

The tree may also be arranged based upon Internet domain names. This naming approach is becoming
increasing popular as it allows for directory services to be located using the DNS. Figure 1.2 shows an
example LDAP directory tree using domain-based naming.

Figure 1.2: LDAP directory tree (Internet naming)

In addition, LDAP allows you to control which attributes are required and allowed in an entry through the use
of a special attribute called objectClass. The values of the objectClass attribute determine the schema
rules the entry must obey.

How is the information referenced? An entry is referenced by its distinguished name, which is constructed by
taking the name of the entry itself (called the Relative Distinguished Name or RDN) and concatenating the
names of its ancestor entries. For example, the entry for Barbara Jensen in the Internet naming example above
has an RDN of uid=babs and a DN of uid=babs,ou=People,dc=example,dc=com. The full DN format is
described in RFC4514, "LDAP: String Representation of Distinguished Names."

How is the information accessed? LDAP defines operations for interrogating and updating the directory.
Operations are provided for adding and deleting an entry from the directory, changing an existing entry, and
changing the name of an entry. Most of the time, though, LDAP is used to search for information in the
directory. The LDAP search operation allows some portion of the directory to be searched for entries that
match some criteria specified by a search filter. Information can be requested from each entry that matches the
criteria.

For example, you might want to search the entire directory subtree at and below dc=example,dc=com for
people with the name Barbara Jensen, retrieving the email address of each entry found. LDAP lets you do
this easily. Or you might want to search the entries directly below the st=California,c=US entry for
organizations with the string Acme in their name, and that have a fax number. LDAP lets you do this too. The
next section describes in more detail what you can do with LDAP and how it might be useful to you.

OpenLDAP Software 2.5 Administrator's Guide

5

https://www.rfc-editor.org/rfc/rfc4514.txt

How is the information protected from unauthorized access? Some directory services provide no protection,
allowing anyone to see the information. LDAP provides a mechanism for a client to authenticate, or prove its
identity to a directory server, paving the way for rich access control to protect the information the server
contains. LDAP also supports data security (integrity and confidentiality) services.

1.3. When should I use LDAP?

This is a very good question. In general, you should use a Directory server when you require data to be
centrally managed, stored and accessible via standards based methods.

Some common examples found throughout the industry are, but not limited to:

Machine Authentication•
User Authentication•
User/System Groups•
Address book•
Organization Representation•
Asset Tracking•
Telephony Information Store•
User resource management•
E-mail address lookups•
Application Configuration store•
PBX Configuration store•
etc.....•

There are various Distributed Schema Files that are standards based, but you can always create your own
Schema Specification.

There are always new ways to use a Directory and apply LDAP principles to address certain problems,
therefore there is no simple answer to this question.

If in doubt, join the general LDAP forum for non-commercial discussions and information relating to LDAP
at: http://www.umich.edu/~dirsvcs/ldap/mailinglist.html and ask

1.4. When should I not use LDAP?

When you start finding yourself bending the directory to do what you require, maybe a redesign is needed. Or
if you only require one application to use and manipulate your data (for discussion of LDAP vs RDBMS,
please read the LDAP vs RDBMS section).

It will become obvious when LDAP is the right tool for the job.

1.5. How does LDAP work?

LDAP utilizes a client-server model. One or more LDAP servers contain the data making up the directory
information tree (DIT). The client connects to servers and asks it a question. The server responds with an
answer and/or with a pointer to where the client can get additional information (typically, another LDAP
server). No matter which LDAP server a client connects to, it sees the same view of the directory; a name
presented to one LDAP server references the same entry it would at another LDAP server. This is an

OpenLDAP Software 2.5 Administrator's Guide

6

http://www.umich.edu/~dirsvcs/ldap/mailinglist.html

important feature of a global directory service.

1.6. What about X.500?

Technically, LDAP is a directory access protocol to an X.500 directory service, the OSI directory service.
Initially, LDAP clients accessed gateways to the X.500 directory service. This gateway ran LDAP between
the client and gateway and X.500's Directory Access Protocol (DAP) between the gateway and the X.500
server. DAP is a heavyweight protocol that operates over a full OSI protocol stack and requires a significant
amount of computing resources. LDAP is designed to operate over TCP/IP and provides most of the
functionality of DAP at a much lower cost.

While LDAP is still used to access X.500 directory service via gateways, LDAP is now more commonly
directly implemented in X.500 servers.

The Standalone LDAP Daemon, or slapd(8), can be viewed as a lightweight X.500 directory server. That is, it
does not implement the X.500's DAP nor does it support the complete X.500 models.

If you are already running a X.500 DAP service and you want to continue to do so, you can probably stop
reading this guide. This guide is all about running LDAP via slapd(8), without running X.500 DAP. If you are
not running X.500 DAP, want to stop running X.500 DAP, or have no immediate plans to run X.500 DAP,
read on.

It is possible to replicate data from an LDAP directory server to a X.500 DAP DSA. This requires an
LDAP/DAP gateway. OpenLDAP Software does not include such a gateway.

1.7. What is the difference between LDAPv2 and LDAPv3?

LDAPv3 was developed in the late 1990's to replace LDAPv2. LDAPv3 adds the following features to LDAP:

Strong authentication and data security services via SASL•
Certificate authentication and data security services via TLS (SSL)•
Internationalization through the use of Unicode•
Referrals and Continuations•
Schema Discovery•
Extensibility (controls, extended operations, and more)•

LDAPv2 is historic (RFC3494). As most so-called LDAPv2 implementations (including slapd(8)) do not
conform to the LDAPv2 technical specification, interoperability amongst implementations claiming LDAPv2
support is limited. As LDAPv2 differs significantly from LDAPv3, deploying both LDAPv2 and LDAPv3
simultaneously is quite problematic. LDAPv2 should be avoided. LDAPv2 is disabled by default.

1.8. LDAP vs RDBMS

This question is raised many times, in different forms. The most common, however, is: Why doesn't
OpenLDAP use a relational database management system (RDBMS) instead of an embedded key/value store
like LMDB? In general, expecting that the sophisticated algorithms implemented by commercial-grade
RDBMS would make OpenLDAP be faster or somehow better and, at the same time, permitting sharing of
data with other applications.

OpenLDAP Software 2.5 Administrator's Guide

7

https://www.rfc-editor.org/rfc/rfc3494.txt

The short answer is that use of an embedded database and custom indexing system allows OpenLDAP to
provide greater performance and scalability without loss of reliability. OpenLDAP uses LMDB concurrent /
transactional database software.

Now for the long answer. We are all confronted all the time with the choice RDBMSes vs. directories. It is a
hard choice and no simple answer exists.

It is tempting to think that having a RDBMS backend to the directory solves all problems. However, it is a
pig. This is because the data models are very different. Representing directory data with a relational database
is going to require splitting data into multiple tables.

Think for a moment about the person objectclass. Its definition requires attribute types objectclass, sn and cn
and allows attribute types userPassword, telephoneNumber, seeAlso and description. All of these attributes
are multivalued, so a normalization requires putting each attribute type in a separate table.

Now you have to decide on appropriate keys for those tables. The primary key might be a combination of the
DN, but this becomes rather inefficient on most database implementations.

The big problem now is that accessing data from one entry requires seeking on different disk areas. On some
applications this may be OK but in many applications performance suffers.

The only attribute types that can be put in the main table entry are those that are mandatory and single-value.
You may add also the optional single-valued attributes and set them to NULL or something if not present.

But wait, the entry can have multiple objectclasses and they are organized in an inheritance hierarchy. An
entry of objectclass organizationalPerson now has the attributes from person plus a few others and some
formerly optional attribute types are now mandatory.

What to do? Should we have different tables for the different objectclasses? This way the person would have
an entry on the person table, another on organizationalPerson, etc. Or should we get rid of person and put
everything on the second table?

But what do we do with a filter like (cn=*) where cn is an attribute type that appears in many, many
objectclasses. Should we search all possible tables for matching entries? Not very attractive.

Once this point is reached, three approaches come to mind. One is to do full normalization so that each
attribute type, no matter what, has its own separate table. The simplistic approach where the DN is part of the
primary key is extremely wasteful, and calls for an approach where the entry has a unique numeric id that is
used instead for the keys and a main table that maps DNs to ids. The approach, anyway, is very inefficient
when several attribute types from one or more entries are requested. Such a database, though cumbersomely,
can be managed from SQL applications.

The second approach is to put the whole entry as a blob in a table shared by all entries regardless of the
objectclass and have additional tables that act as indices for the first table. Index tables are not database
indices, but are fully managed by the LDAP server-side implementation. However, the database becomes
unusable from SQL. And, thus, a fully fledged database system provides little or no advantage. The full
generality of the database is unneeded. Much better to use something light and fast, like LMDB.

A completely different way to see this is to give up any hopes of implementing the directory data model. In
this case, LDAP is used as an access protocol to data that provides only superficially the directory data model.
For instance, it may be read only or, where updates are allowed, restrictions are applied, such as making

OpenLDAP Software 2.5 Administrator's Guide

8

single-value attribute types that would allow for multiple values. Or the impossibility to add new objectclasses
to an existing entry or remove one of those present. The restrictions span the range from allowed restrictions
(that might be elsewhere the result of access control) to outright violations of the data model. It can be,
however, a method to provide LDAP access to preexisting data that is used by other applications. But in the
understanding that we don't really have a "directory".

Existing commercial LDAP server implementations that use a relational database are either from the first kind
or the third. I don't know of any implementation that uses a relational database to do inefficiently what LMDB
does efficiently. For those who are interested in "third way" (exposing EXISTING data from RDBMS as
LDAP tree, having some limitations compared to classic LDAP model, but making it possible to interoperate
between LDAP and SQL applications):

OpenLDAP includes back-sql - the backend that makes it possible. It uses ODBC + additional
metainformation about translating LDAP queries to SQL queries in your RDBMS schema, providing different
levels of access - from read-only to full access depending on RDBMS you use, and your schema.

For more information on concept and limitations, see slapd-sql(5) man page, or the Backends section. There
are also several examples for several RDBMSes in back-sql/rdbms_depend/* subdirectories.

1.9. What is slapd and what can it do?

slapd(8) is an LDAP directory server that runs on many different platforms. You can use it to provide a
directory service of your very own. Your directory can contain pretty much anything you want to put in it.
You can connect it to the global LDAP directory service, or run a service all by yourself. Some of slapd's
more interesting features and capabilities include:

LDAPv3: slapd implements version 3 of Lightweight Directory Access Protocol. slapd supports LDAP over
both IPv4 and IPv6 and Unix IPC.

Simple Authentication and Security Layer: slapd supports strong authentication and data security (integrity
and confidentiality) services through the use of SASL. slapd's SASL implementation utilizes Cyrus SASL
software which supports a number of mechanisms including DIGEST-MD5, EXTERNAL, and GSSAPI.

Transport Layer Security: slapd supports certificate-based authentication and data security (integrity and
confidentiality) services through the use of TLS (or SSL). slapd's TLS implementation can utilize OpenSSL
or GnuTLS, software.

Topology control: slapd can be configured to restrict access at the socket layer based upon network topology
information. This feature utilizes TCP wrappers.

Access control: slapd provides a rich and powerful access control facility, allowing you to control access to
the information in your database(s). You can control access to entries based on LDAP authorization
information, IP address, domain name and other criteria. slapd supports both static and dynamic access
control information.

Internationalization: slapd supports Unicode and language tags.

Choice of database backends: slapd comes with a variety of different database backends you can choose
from. They include MDB, a hierarchical high-performance transactional database backend; and PASSWD, a
simple backend interface to the passwd(5) file. The MDB backend utilizes LMDB.

OpenLDAP Software 2.5 Administrator's Guide

9

https://www.cyrusimap.org/sasl/
https://www.openssl.org/
https://gnutls.org/

Multiple database instances: slapd can be configured to serve multiple databases at the same time. This
means that a single slapd server can respond to requests for many logically different portions of the LDAP
tree, using the same or different database backends.

Generic modules API: If you require even more customization, slapd lets you write your own modules
easily. slapd consists of two distinct parts: a front end that handles protocol communication with LDAP
clients; and modules which handle specific tasks such as database operations. Because these two pieces
communicate via a well-defined C API, you can write your own customized modules which extend slapd in
numerous ways. Also, a number of programmable database modules are provided. These allow you to expose
external data sources to slapd using popular programming languages (Perl, and SQL).

Threads: slapd is threaded for high performance. A single multi-threaded slapd process handles all incoming
requests using a pool of threads. This reduces the amount of system overhead required while providing high
performance.

Replication: slapd can be configured to maintain shadow copies of directory information. This
single-provider/multiple-consumer replication scheme is vital in high-volume environments where a single
slapd installation just doesn't provide the necessary availability or reliability. For extremely demanding
environments where a single point of failure is not acceptable, multi-provider replication is also available.
With multi-provider replication two or more nodes can accept write operations allowing for redundancy at the
provider level.

slapd includes support for LDAP Sync-based replication.

Proxy Cache: slapd can be configured as a caching LDAP proxy service.

Configuration: slapd is highly configurable through a single configuration file which allows you to change
just about everything you'd ever want to change. Configuration options have reasonable defaults, making your
job much easier. Configuration can also be performed dynamically using LDAP itself, which greatly improves
manageability.

1.10. What is lloadd and what can it do?

lloadd(8) is a daemon that provides an LDAPv3 load balancer service. It is responsible for distributing
requests across a set of slapd instances.

See the Load Balancing with lloadd chapter for information about how to configure and run lloadd(8).

Alternatively, the load balancer can run as a module embedded inside of slapd. This is also described in the
Load Balancing with lloadd chapter.

OpenLDAP Software 2.5 Administrator's Guide

10

https://www.perl.org/

2. A Quick-Start Guide
The following is a quick start guide to OpenLDAP Software 2.5, including the Standalone LDAP Daemon,
slapd(8).

It is meant to walk you through the basic steps needed to install and configure OpenLDAP Software. It should
be used in conjunction with the other chapters of this document, manual pages, and other materials provided
with the distribution (e.g. the INSTALL document) or on the OpenLDAP web site
(http://www.OpenLDAP.org), in particular the OpenLDAP Software FAQ
(http://www.OpenLDAP.org/faq/?file=2).

If you intend to run OpenLDAP Software seriously, you should review all of this document before attempting
to install the software.

Note: This quick start guide does not use strong authentication nor any integrity or confidential protection
services. These services are described in other chapters of the OpenLDAP Administrator's Guide.

Get the software
You can obtain a copy of the software by following the instructions on the OpenLDAP Software
download page (http://www.openldap.org/software/download/). It is recommended that new users
start with the latest release.

1.

Unpack the distribution
Pick a directory for the source to live under, change directory to there, and unpack the distribution
using the following commands:
gunzip -c openldap-VERSION.tgz | tar xvfB -

then relocate yourself into the distribution directory:
cd openldap-VERSION

You'll have to replace VERSION with the version name of the release.

2.

Review documentation
You should now review the COPYRIGHT, LICENSE, README and INSTALL documents provided with the
distribution. The COPYRIGHT and LICENSE provide information on acceptable use, copying, and
limitation of warranty of OpenLDAP Software.

You should also review other chapters of this document. In particular, the Building and Installing
OpenLDAP Software chapter of this document provides detailed information on prerequisite software
and installation procedures.

3.

Run configure
You will need to run the provided configure script to configure the distribution for building on your
system. The configure script accepts many command line options that enable or disable optional
software features. Usually the defaults are okay, but you may want to change them. To get a complete
list of options that configure accepts, use the --help option:
./configure --help

However, given that you are using this guide, we'll assume you are brave enough to just let
configure determine what's best:

4.

11

https://www.openldap.org/software/
https://www.openldap.org/
http://www.OpenLDAP.org
http://www.OpenLDAP.org/faq/?file=2
http://www.openldap.org/software/download/

./configure

Assuming configure doesn't dislike your system, you can proceed with building the software. If
configure did complain, well, you'll likely need to go to the Software FAQ Installation section
(http://www.openldap.org/faq/?file=8) and/or actually read the Building and Installing OpenLDAP
Software chapter of this document.

Build the software.
The next step is to build the software. This step has two parts, first we construct dependencies and
then we compile the software:
make depend

make

Both makes should complete without error.

5.

Test the build.
To ensure a correct build, you should run the test suite (it only takes a few minutes):
make test

Tests which apply to your configuration will run and they should pass. Some tests, such as the
replication test, may be skipped.

6.

Install the software.
You are now ready to install the software; this usually requires super-user privileges:
su root -c 'make install'

Everything should now be installed under /usr/local (or whatever installation prefix was used by
configure).

7.

Edit the configuration file.
Use your favorite editor to edit the provided slapd.ldif example (usually installed as
/usr/local/etc/openldap/slapd.ldif) to contain a MDB database definition of the form:
dn: olcDatabase=mdb,cn=config

objectClass: olcDatabaseConfig

objectClass: olcMdbConfig

olcDatabase: mdb

OlcDbMaxSize: 1073741824

olcSuffix: dc=<MY-DOMAIN>,dc=<COM>

olcRootDN: cn=Manager,dc=<MY-DOMAIN>,dc=<COM>

olcRootPW: secret

olcDbDirectory: /usr/local/var/openldap-data

olcDbIndex: objectClass eq

Be sure to replace <MY-DOMAIN> and <COM> with the appropriate domain components of your domain
name. For example, for example.com, use:
dn: olcDatabase=mdb,cn=config

objectClass: olcDatabaseConfig

objectClass: olcMdbConfig

olcDatabase: mdb

OlcDbMaxSize: 1073741824

olcSuffix: dc=example,dc=com

olcRootDN: cn=Manager,dc=example,dc=com

olcRootPW: secret

olcDbDirectory: /usr/local/var/openldap-data

olcDbIndex: objectClass eq

If your domain contains additional components, such as eng.uni.edu.eu, use:

8.

OpenLDAP Software 2.5 Administrator's Guide

12

http://www.openldap.org/faq/?file=8

dn: olcDatabase=mdb,cn=config

objectClass: olcDatabaseConfig

objectClass: olcMdbConfig

olcDatabase: mdb

OlcDbMaxSize: 1073741824

olcSuffix: dc=eng,dc=uni,dc=edu,dc=eu

olcRootDN: cn=Manager,dc=eng,dc=uni,dc=edu,dc=eu

olcRootPW: secret

olcDbDirectory: /usr/local/var/openldap-data

olcDbIndex: objectClass eq

Details regarding configuring slapd(8) can be found in the slapd-config(5) manual page and the
Configuring slapd chapter of this document. Note that the specified olcDbDirectory must exist prior
to starting slapd(8).

Import the configuration database
You are now ready to import your configuration database for use by slapd(8), by running the
command:
su root -c /usr/local/sbin/slapadd -n 0 -F /usr/local/etc/slapd.d -l

/usr/local/etc/openldap/slapd.ldif

9.

Start SLAPD.
You are now ready to start the Standalone LDAP Daemon, slapd(8), by running the command:
su root -c /usr/local/libexec/slapd -F /usr/local/etc/slapd.d

To check to see if the server is running and configured correctly, you can run a search against it with
ldapsearch(1). By default, ldapsearch is installed as /usr/local/bin/ldapsearch:
ldapsearch -x -b '' -s base '(objectclass=*)' namingContexts

Note the use of single quotes around command parameters to prevent special characters from being
interpreted by the shell. This should return:
dn:

namingContexts: dc=example,dc=com

Details regarding running slapd(8) can be found in the slapd(8) manual page and the Running slapd
chapter of this document.

10.

Add initial entries to your directory.
You can use ldapadd(1) to add entries to your LDAP directory. ldapadd expects input in LDIF form.
We'll do it in two steps:

create an LDIF file1.
run ldapadd2.

Use your favorite editor and create an LDIF file that contains:
dn: dc=<MY-DOMAIN>,dc=<COM>

objectclass: dcObject

objectclass: organization

o: <MY ORGANIZATION>

dc: <MY-DOMAIN>

dn: cn=Manager,dc=<MY-DOMAIN>,dc=<COM>

objectclass: organizationalRole

cn: Manager

Be sure to replace <MY-DOMAIN> and <COM> with the appropriate domain components of your domain
name. <MY ORGANIZATION> should be replaced with the name of your organization. When you cut

11.

OpenLDAP Software 2.5 Administrator's Guide

13

and paste, be sure to trim any leading and trailing whitespace from the example.
dn: dc=example,dc=com

objectclass: dcObject

objectclass: organization

o: Example Company

dc: example

dn: cn=Manager,dc=example,dc=com

objectclass: organizationalRole

cn: Manager

Now, you may run ldapadd(1) to insert these entries into your directory.
ldapadd -x -D "cn=Manager,dc=<MY-DOMAIN>,dc=<COM>" -W -f example.ldif

Be sure to replace <MY-DOMAIN> and <COM> with the appropriate domain components of your domain
name. You will be prompted for the "secret" specified in slapd.conf. For example, for
example.com, use:
ldapadd -x -D "cn=Manager,dc=example,dc=com" -W -f example.ldif

where example.ldif is the file you created above.

Additional information regarding directory creation can be found in the Database Creation and
Maintenance Tools chapter of this document.

See if it works.
Now we're ready to verify the added entries are in your directory. You can use any LDAP client to do
this, but our example uses the ldapsearch(1) tool. Remember to replace dc=example,dc=com with the
correct values for your site:
ldapsearch -x -b 'dc=example,dc=com' '(objectclass=*)'

This command will search for and retrieve every entry in the database.

12.

You are now ready to add more entries using ldapadd(1) or another LDAP client, experiment with various
configuration options, backend arrangements, etc..

Note that by default, the slapd(8) database grants read access to everybody excepting the super-user (as
specified by the rootdn configuration directive). It is highly recommended that you establish controls to
restrict access to authorized users. Access controls are discussed in the Access Control chapter. You are also
encouraged to read the Security Considerations, Using SASL and Using TLS sections.

The following chapters provide more detailed information on making, installing, and running slapd(8).

OpenLDAP Software 2.5 Administrator's Guide

14

3. The Big Picture - Configuration Choices
This section gives a brief overview of various LDAP directory configurations, and how your Standalone
LDAP Daemon slapd(8) fits in with the rest of the world.

3.1. Local Directory Service

In this configuration, you run a slapd(8) instance which provides directory service for your local domain only.
It does not interact with other directory servers in any way. This configuration is shown in Figure 3.1.

Figure 3.1: Local service configuration.

Use this configuration if you are just starting out (it's the one the quick-start guide makes for you) or if you
want to provide a local service and are not interested in connecting to the rest of the world. It's easy to
upgrade to another configuration later if you want.

3.2. Local Directory Service with Referrals

In this configuration, you run a slapd(8) instance which provides directory service for your local domain and
configure it to return referrals to other servers capable of handling requests. You may run this service (or
services) yourself or use one provided to you. This configuration is shown in Figure 3.2.

Figure 3.2: Local service with referrals

Use this configuration if you want to provide local service and participate in the Global Directory, or you
want to delegate responsibility for subordinate entries to another server.

3.3. Replicated Directory Service

slapd(8) includes support for LDAP Sync-based replication, called syncrepl, which may be used to maintain
shadow copies of directory information on multiple directory servers. In its most basic configuration, the
provider is a syncrepl provider and one or more consumer (or shadow) are syncrepl consumers. An example

15

provider-consumer configuration is shown in figure 3.3. Multi-Provider configurations are also supported.

Figure 3.3: Replicated Directory Services

This configuration can be used in conjunction with either of the first two configurations in situations where a
single slapd(8) instance does not provide the required reliability or availability.

3.4. Distributed Local Directory Service

In this configuration, the local service is partitioned into smaller services, each of which may be replicated,
and glued together with superior and subordinate referrals.

OpenLDAP Software 2.5 Administrator's Guide

16

4. Building and Installing OpenLDAP Software
This chapter details how to build and install the OpenLDAP Software package including slapd(8), the
Standalone LDAP Daemon. Building and installing OpenLDAP Software requires several steps: installing
prerequisite software, configuring OpenLDAP Software itself, making, and finally installing. The following
sections describe this process in detail.

4.1. Obtaining and Extracting the Software

You can obtain OpenLDAP Software from the project's download page at
http://www.openldap.org/software/download/ or directly from the project's FTP service at
ftp://ftp.openldap.org/pub/OpenLDAP/.

The project makes available two series of packages for general use. The project makes releases as new
features and bug fixes come available. Though the project takes steps to improve stability of these releases, it
is common for problems to arise only after release. The stable release is the latest release which has
demonstrated stability through general use.

Users of OpenLDAP Software can choose, depending on their desire for the latest features versus
demonstrated stability, the most appropriate series to install.

After downloading OpenLDAP Software, you need to extract the distribution from the compressed archive
file and change your working directory to the top directory of the distribution:

gunzip -c openldap-VERSION.tgz | tar xf -

cd openldap-VERSION

You'll have to replace VERSION with the version name of the release.

You should now review the COPYRIGHT, LICENSE, README and INSTALL documents provided with the
distribution. The COPYRIGHT and LICENSE provide information on acceptable use, copying, and limitation of
warranty of OpenLDAP Software. The README and INSTALL documents provide detailed information on
prerequisite software and installation procedures.

4.2. Prerequisite software

OpenLDAP Software relies upon a number of software packages distributed by third parties. Depending on
the features you intend to use, you may have to download and install a number of additional software
packages. This section details commonly needed third party software packages you might have to install.
However, for an up-to-date prerequisite information, the README document should be consulted. Note that
some of these third party packages may depend on additional software packages. Install each package per the
installation instructions provided with it.

4.2.1.

OpenLDAP clients and servers require installation of OpenSSL or GnuTLS TLS libraries to provide Transport
Layer Security services. Though some operating systems may provide these libraries as part of the base
system or as an optional software component, OpenSSL and GnuTLS often require separate installation.

17

https://www.openldap.org/
http://www.openldap.org/software/download/
ftp://ftp.openldap.org/pub/OpenLDAP/
https://www.openssl.org/
https://gnutls.org/

OpenSSL is available from http://www.openssl.org/. GnuTLS is available from
http://www.gnu.org/software/gnutls/.

OpenLDAP Software will not be fully LDAPv3 compliant unless OpenLDAP's configure detects a usable
TLS library.

4.2.2.

OpenLDAP clients and servers require installation of Cyrus SASL libraries to provide Simple Authentication
and Security Layer services. Though some operating systems may provide this library as part of the base
system or as an optional software component, Cyrus SASL often requires separate installation.

Cyrus SASL is available from http://asg.web.cmu.edu/sasl/sasl-library.html. Cyrus SASL will make use of
OpenSSL and Kerberos/GSSAPI libraries if preinstalled.

OpenLDAP Software will not be fully LDAPv3 compliant unless OpenLDAP's configure detects a usable
Cyrus SASL installation.

4.2.3.

OpenLDAP clients and servers support Kerberos authentication services. In particular, OpenLDAP supports
the Kerberos V GSS-API SASL authentication mechanism known as the GSSAPI mechanism. This feature
requires, in addition to Cyrus SASL libraries, either Heimdal or MIT Kerberos V libraries.

Heimdal Kerberos is available from https://github.com/heimdal/heimdal/. MIT Kerberos is available from
http://web.mit.edu/kerberos/www/.

Use of strong authentication services, such as those provided by Kerberos, is highly recommended.

4.2.4. Database Software

OpenLDAP's slapd(8) MDB primary database backend uses the LMDB software included with the
OpenLDAP source. There is no need to download any additional software to have MDB support.

4.2.5. Threads

OpenLDAP is designed to take advantage of threads. OpenLDAP supports POSIX pthreads, NT threads and a
number of other varieties. configure will complain if it cannot find a suitable thread subsystem. If this
occurs, please consult the Software|Installation|Platform Hints section of the OpenLDAP FAQ
http://www.openldap.org/faq/.

4.2.6. TCP Wrappers

slapd(8) supports TCP Wrappers (IP level access control filters) if preinstalled. Use of TCP Wrappers or other
IP-level access filters (such as those provided by an IP-level firewall) is recommended for servers containing
non-public information.

OpenLDAP Software 2.5 Administrator's Guide

18

http://www.openssl.org/
http://www.gnu.org/software/gnutls/
https://www.cyrusimap.org/sasl/
http://asg.web.cmu.edu/sasl/sasl-library.html
https://github.com/heimdal/
https://web.mit.edu/kerberos/
https://github.com/heimdal/heimdal/
http://web.mit.edu/kerberos/www/
http://www.openldap.org/faq/

4.3. Running configure

Now you should probably run the configure script with the --help option. This will give you a list of
options that you can change when building OpenLDAP. Many of the features of OpenLDAP can be enabled
or disabled using this method.

 ./configure --help

The configure script also looks for certain variables on the command line and in the environment. These
include:

Table 4.1: Variables

Variable Description
CC Specify alternative C Compiler
CFLAGS Specify additional compiler flags
CPPFLAGS Specify C Preprocessor flags
LDFLAGS Specify linker flags
LIBS Specify additional libraries

Now run the configure script with any desired configuration options or variables.

 ./configure [options] [variable=value ...]

As an example, let's assume that we want to install OpenLDAP with MDB backend and TCP Wrappers
support. By default, MDB is enabled and TCP Wrappers is not. So, we just need to specify
--enable-wrappers to include TCP Wrappers support:

 ./configure --enable-wrappers

However, this will fail to locate dependent software not installed in system directories. For example, if TCP
Wrappers headers and libraries are installed in /usr/local/include and /usr/local/lib respectively, the
configure script should typically be called as follows:

 ./configure --enable-wrappers \
 CPPFLAGS="-I/usr/local/include" \
 LDFLAGS="-L/usr/local/lib -Wl,-rpath,/usr/local/lib"

The configure script will normally auto-detect appropriate settings. If you have problems at this stage,
consult any platform specific hints and check your configure options, if any.

4.4. Building the Software

Once you have run the configure script the last line of output should be:

 Please "make depend" to build dependencies

If the last line of output does not match, configure has failed, and you will need to review its output to
determine what went wrong. You should not proceed until configure completes successfully.

To build dependencies, run:

OpenLDAP Software 2.5 Administrator's Guide

19

 make depend

Now build the software, this step will actually compile OpenLDAP.

 make

You should examine the output of this command carefully to make sure everything is built correctly. Note that
this command builds the LDAP libraries and associated clients as well as slapd(8).

4.5. Testing the Software

Once the software has been properly configured and successfully made, you should run the test suite to verify
the build.

 make test

Tests which apply to your configuration will run and they should pass. Some tests, such as the replication test,
may be skipped if not supported by your configuration.

4.6. Installing the Software

Once you have successfully tested the software, you are ready to install it. You will need to have write
permission to the installation directories you specified when you ran configure. By default OpenLDAP
Software is installed in /usr/local. If you changed this setting with the --prefix configure option, it will be
installed in the location you provided.

Typically, the installation requires super-user privileges. From the top level OpenLDAP source directory,
type:

 su root -c 'make install'

and enter the appropriate password when requested.

You should examine the output of this command carefully to make sure everything is installed correctly. You
will find the configuration files for slapd(8) in /usr/local/etc/openldap by default. See the chapter
Configuring slapd for additional information.

OpenLDAP Software 2.5 Administrator's Guide

20

5. Configuring slapd
Once the software has been built and installed, you are ready to configure slapd(8) for use at your site.

OpenLDAP 2.3 and later have transitioned to using a dynamic runtime configuration engine, slapd-config(5).
slapd-config(5)

is fully LDAP-enabled•
is managed using the standard LDAP operations•
stores its configuration data in an LDIF database, generally in the
/usr/local/etc/openldap/slapd.d directory.

•

allows all of slapd's configuration options to be changed on the fly, generally without requiring a
server restart for the changes to take effect.

•

This chapter describes the general format of the slapd-config(5) configuration system, followed by a detailed
description of commonly used settings.

The older style slapd.conf(5) file is still supported, but its use is deprecated and support for it will be
withdrawn in a future OpenLDAP release. Configuring slapd(8) via slapd.conf(5) is described in the next
chapter.

Refer to slapd(8) for information on how to have slapd automatically convert from slapd.conf(5) to
slapd-config(5).

Note: Although the slapd-config(5) system stores its configuration as (text-based) LDIF files, you should
never edit any of the LDIF files directly. Configuration changes should be performed via LDAP operations,
e.g. ldapadd(1), ldapdelete(1), or ldapmodify(1). For offline modifications (when the server is not running),
use slapadd(8) and slapmodify(8).

Note: You will need to continue to use the older slapd.conf(5) configuration system if your OpenLDAP
installation requires the use of one or more backends or overlays that have not been updated to use the
slapd-config(5) system. As of OpenLDAP 2.4.33, all of the official backends have been updated. There may
be additional contributed or experimental overlays that also have not been updated.

5.1. Configuration Layout

The slapd configuration is stored as a special LDAP directory with a predefined schema and DIT. There are
specific objectClasses used to carry global configuration options, schema definitions, backend and database
definitions, and assorted other items. A sample config tree is shown in Figure 5.1.

21

Figure 5.1: Sample configuration tree.

Other objects may be part of the configuration but were omitted from the illustration for clarity.

The slapd-config configuration tree has a very specific structure. The root of the tree is named cn=config and
contains global configuration settings. Additional settings are contained in separate child entries:

Dynamically loaded modules
These may only be used if the --enable-modules option was used to configure the software.

•

Schema definitions
The cn=schema,cn=config entry contains the system schema (all the schema that is hard-coded in
slapd).
Child entries of cn=schema,cn=config contain user schema as loaded from config files or added at
runtime.

•

Backend-specific configuration•
Database-specific configuration
Overlays are defined in children of the Database entry.
Databases and Overlays may also have other miscellaneous children.

•

The usual rules for LDIF files apply to the configuration information: Comment lines beginning with a '#'
character are ignored. If a line begins with a single space, it is considered a continuation of the previous line
(even if the previous line is a comment) and the single leading space is removed. Entries are separated by
blank lines.

The general layout of the config LDIF is as follows:

 # global configuration settings
 dn: cn=config
 objectClass: olcGlobal
 cn: config
 <global config settings>

 # schema definitions
 dn: cn=schema,cn=config
 objectClass: olcSchemaConfig
 cn: schema

OpenLDAP Software 2.5 Administrator's Guide

22

 <system schema>

 dn: cn={X}core,cn=schema,cn=config
 objectClass: olcSchemaConfig
 cn: {X}core
 <core schema>

 # additional user-specified schema
 ...

 # backend definitions
 dn: olcBackend=<typeA>,cn=config
 objectClass: olcBackendConfig
 olcBackend: <typeA>
 <backend-specific settings>

 # database definitions
 dn: olcDatabase={X}<typeA>,cn=config
 objectClass: olcDatabaseConfig
 olcDatabase: {X}<typeA>
 <database-specific settings>

 # subsequent definitions and settings
 ...

Some of the entries listed above have a numeric index "{X}" in their names. While most configuration
settings have an inherent ordering dependency (i.e., one setting must take effect before a subsequent one may
be set), LDAP databases are inherently unordered. The numeric index is used to enforce a consistent ordering
in the configuration database, so that all ordering dependencies are preserved. In most cases the index does
not have to be provided; it will be automatically generated based on the order in which entries are created.

Configuration directives are specified as values of individual attributes. Most of the attributes and
objectClasses used in the slapd configuration have a prefix of "olc" (OpenLDAP Configuration) in their
names. Generally there is a one-to-one correspondence between the attributes and the old-style slapd.conf
configuration keywords, using the keyword as the attribute name, with the "olc" prefix attached.

A configuration directive may take arguments. If so, the arguments are separated by whitespace. If an
argument contains whitespace, the argument should be enclosed in double quotes "like this". In the
descriptions that follow, arguments that should be replaced by actual text are shown in brackets <>.

The distribution contains an example configuration file that will be installed in the
/usr/local/etc/openldap directory. A number of files containing schema definitions (attribute types and
object classes) are also provided in the /usr/local/etc/openldap/schema directory.

5.2. Configuration Directives

This section details commonly used configuration directives. For a complete list, see the slapd-config(5)
manual page. This section will treat the configuration directives in a top-down order, starting with the global
directives in the cn=config entry. Each directive will be described along with its default value (if any) and an
example of its use.

OpenLDAP Software 2.5 Administrator's Guide

23

5.2.1. cn=config

Directives contained in this entry generally apply to the server as a whole. Most of them are system or
connection oriented, not database related. This entry must have the olcGlobal objectClass.

5.2.1.1. olcIdleTimeout: <integer>

Specify the number of seconds to wait before forcibly closing an idle client connection. A value of 0, the
default, disables this feature.

5.2.1.2. olcLogLevel: <level>

This directive specifies the level at which log statements and operation statistics should be sent to syslog
(currently logged to the syslogd(8) LOG_LOCAL4 facility). You must have configured OpenLDAP
--enable-debug (the default) for this to work, except for the two statistics levels, which are always enabled.
Log levels may be specified as integers or by keyword. Multiple log levels may be used and the levels are
additive. The possible values for <level> are:

Table 5.1: Logging Levels

Level Keyword Description
-1 any enable all debugging
0 no debugging
1 (0x1 trace) trace function calls
2 (0x2 packets) debug packet handling
4 (0x4 args) heavy trace debugging
8 (0x8 conns) connection management

16 (0x10 BER) print out packets sent and received
32 (0x20 filter) search filter processing
64 (0x40 config) configuration processing

128 (0x80 ACL) access control list processing
256 (0x100 stats) stats log connections/operations/results
512 (0x200 stats2) stats log entries sent

1024 (0x400 shell) print communication with shell backends
2048 (0x800 parse) print entry parsing debugging

16384 (0x4000 sync) syncrepl consumer processing
32768 (0x8000 none) only messages that get logged regardless of configured log level

The desired log level can be input as a single integer that combines the (ORed) desired levels, both in decimal
or in hexadecimal notation, as a list of integers (that are ORed internally), or as a list of the names that are
shown between brackets, such that

 olcLogLevel 129
 olcLogLevel 0x81
 olcLogLevel 128 1
 olcLogLevel 0x80 0x1
 olcLogLevel acl trace

are equivalent.

OpenLDAP Software 2.5 Administrator's Guide

24

Examples:

 olcLogLevel -1

This will enable all log levels.

 olcLogLevel conns filter

Just log the connection and search filter processing.

 olcLogLevel none

Log those messages that are logged regardless of the configured loglevel. This differs from setting the log
level to 0, when no logging occurs. At least the None level is required to have high priority messages logged.

Default:

 olcLogLevel stats

Basic stats logging is configured by default.

5.2.1.3. olcReferral <URI>

This directive specifies the referral to pass back when slapd cannot find a local database to handle a request.

Example:

 olcReferral: ldap://root.openldap.org

This will refer non-local queries to the global root LDAP server at the OpenLDAP Project. Smart LDAP
clients can re-ask their query at that server, but note that most of these clients are only going to know how to
handle simple LDAP URLs that contain a host part and optionally a distinguished name part.

5.2.1.4. Sample Entry

dn: cn=config
objectClass: olcGlobal
cn: config
olcIdleTimeout: 30
olcLogLevel: Stats
olcReferral: ldap://root.openldap.org

5.2.2. cn=module

If support for dynamically loaded modules was enabled when configuring slapd, cn=module entries may be
used to specify sets of modules to load. Module entries must have the olcModuleList objectClass.

5.2.2.1. olcModuleLoad: <filename>

Specify the name of a dynamically loadable module to load. The filename may be an absolute path name or a
simple filename. Non-absolute names are searched for in the directories specified by the olcModulePath
directive.

OpenLDAP Software 2.5 Administrator's Guide

25

5.2.2.2. olcModulePath: <pathspec>

Specify a list of directories to search for loadable modules. Typically the path is colon-separated but this
depends on the operating system.

5.2.2.3. Sample Entries

dn: cn=module{0},cn=config
objectClass: olcModuleList
cn: module{0}
olcModuleLoad: /usr/local/lib/smbk5pwd.la

dn: cn=module{1},cn=config
objectClass: olcModuleList
cn: module{1}
olcModulePath: /usr/local/lib:/usr/local/lib/slapd
olcModuleLoad: accesslog.la
olcModuleLoad: pcache.la

5.2.3. cn=schema

The cn=schema entry holds all of the schema definitions that are hard-coded in slapd. As such, the values in
this entry are generated by slapd so no schema values need to be provided in the config file. The entry must
still be defined though, to serve as a base for the user-defined schema to add in underneath. Schema entries
must have the olcSchemaConfig objectClass.

5.2.3.1. olcAttributeTypes: <RFC4512 Attribute Type Description>

This directive defines an attribute type. Please see the Schema Specification chapter for information regarding
how to use this directive.

5.2.3.2. olcObjectClasses: <RFC4512 Object Class Description>

This directive defines an object class. Please see the Schema Specification chapter for information regarding
how to use this directive.

5.2.3.3. Sample Entries

dn: cn=schema,cn=config
objectClass: olcSchemaConfig
cn: schema

dn: cn=test,cn=schema,cn=config
objectClass: olcSchemaConfig
cn: test
olcAttributeTypes: (1.1.1
 NAME 'testAttr'
 EQUALITY integerMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.27)
olcAttributeTypes: (1.1.2 NAME 'testTwo' EQUALITY caseIgnoreMatch
 SUBSTR caseIgnoreSubstringsMatch SYNTAX 1.3.6.1.4.1.1466.115.121.1.44)
olcObjectClasses: (1.1.3 NAME 'testObject'
 MAY (testAttr $ testTwo) AUXILIARY)

OpenLDAP Software 2.5 Administrator's Guide

26

https://www.rfc-editor.org/rfc/rfc4512.txt
https://www.rfc-editor.org/rfc/rfc4512.txt

5.2.4. Backend-specific Directives

Backend directives apply to all database instances of the same type and, depending on the directive, may be
overridden by database directives. Backend entries must have the olcBackendConfig objectClass.

5.2.4.1. olcBackend: <type>

This directive names a backend-specific configuration entry. <type> should be one of the supported backend
types listed in Table 5.2.

Table 5.2: Database Backends

Types Description
asyncmet a Asynchronous Metadirectory backend
config Slapd configuration backend
dnssrv DNS SRV backend
ldap Lightweight Directory Access Protocol (Proxy) backend
ldif Lightweight Data Interchange Format backend
mdb Memory-Mapped DB backend
meta Metadirectory backend
monitor Monitor backend
ndb MySQL NDB backend
null Null backend
passwd Provides read-only access to passwd(5)
perl Perl Programmable backend
relay Relay backend
sock Socket backend
sql SQL Programmable backend
wt WiredTiger backend

Example:

 olcBackend: mdb

This marks the beginning of a new MDB backend definition. At present, only back-mdb implements any
options of this type, so this setting is not needed for any other backends.

5.2.4.2. Sample Entry

 dn: olcBackend=mdb,cn=config
 objectClass: olcBackendConfig
 olcBackend: mdb
 olcBkMdbIdlExp: 16

5.2.5. Database-specific Directives

Directives in this section are supported by every type of database. Database entries must have the
olcDatabaseConfig objectClass.

OpenLDAP Software 2.5 Administrator's Guide

27

5.2.5.1. olcDatabase: [{<index>}]<type>

This directive names a specific database instance. The numeric {<index>} may be provided to distinguish
multiple databases of the same type. Usually the index can be omitted, and slapd will generate it
automatically. <type> should be one of the supported backend types listed in Table 5.2 or the frontend type.

The frontend is a special database that is used to hold database-level options that should be applied to all the
other databases. Subsequent database definitions may also override some frontend settings.

The config database is also special; both the config and the frontend databases are always created
implicitly even if they are not explicitly configured, and they are created before any other databases.

Example:

 olcDatabase: mdb

This marks the beginning of a new MDB database instance.

5.2.5.2. olcAccess: to <what> [by <who> [<accesslevel>] [<control>]]+

This directive grants access (specified by <accesslevel>) to a set of entries and/or attributes (specified by
<what>) by one or more requestors (specified by <who>). See the Access Control section of this guide for
basic usage.

Note: If no olcAccess directives are specified, the default access control policy, to * by * read, allows all
users (both authenticated and anonymous) read access.

Note: Access controls defined in the frontend are appended to all other databases' controls.

5.2.5.3. olcReadonly { TRUE | FALSE }

This directive puts the database into "read-only" mode. Any attempts to modify the database will return an
"unwilling to perform" error. If set on a consumer, modifications sent by syncrepl will still occur.

Default:

 olcReadonly: FALSE

5.2.5.4. olcRootDN: <DN>

This directive specifies the DN that is not subject to access control or administrative limit restrictions for
operations on this database. The DN need not refer to an entry in this database or even in the directory. The
DN may refer to a SASL identity.

Entry-based Example:

 olcRootDN: cn=Manager,dc=example,dc=com

SASL-based Example:

OpenLDAP Software 2.5 Administrator's Guide

28

 olcRootDN: uid=root,cn=example.com,cn=digest-md5,cn=auth

See the SASL Authentication section for information on SASL authentication identities.

5.2.5.5. olcRootPW: <password>

This directive can be used to specify a password for the DN for the rootdn (when the rootdn is set to a DN
within the database).

Example:

 olcRootPW: secret

It is also permissible to provide a hash of the password in RFC2307 form. slappasswd(8) may be used to
generate the password hash.

Example:

 olcRootPW: {SSHA}ZKKuqbEKJfKSXhUbHG3fG8MDn9j1v4QN

The hash was generated using the command slappasswd -s secret.

5.2.5.6. olcSizeLimit: <integer>

This directive specifies the maximum number of entries to return from a search operation.

Default:

 olcSizeLimit: 500

See the Limits section of this guide and slapd-config(5) for more details.

5.2.5.7. olcSuffix: <dn suffix>

This directive specifies the DN suffix of queries that will be passed to this backend database. Multiple suffix
lines can be given, and usually at least one is required for each database definition. (Some backend types, such
as frontend and monitor use a hard-coded suffix which may not be overridden in the configuration.)

Example:

 olcSuffix: dc=example,dc=com

Queries with a DN ending in "dc=example,dc=com" will be passed to this backend.

Note: When the backend to pass a query to is selected, slapd looks at the suffix value(s) in each database
definition in the order in which they were configured. Thus, if one database suffix is a prefix of another, it
must appear after it in the configuration.

OpenLDAP Software 2.5 Administrator's Guide

29

https://www.rfc-editor.org/rfc/rfc2307.txt

5.2.5.8. olcSyncrepl

 olcSyncrepl: rid=<replica ID>
 provider=ldap[s]://<hostname>[:port]
 [type=refreshOnly|refreshAndPersist]
 [interval=dd:hh:mm:ss]
 [retry=[<retry interval> <# of retries>]+]
 searchbase=<base DN>
 [filter=<filter str>]
 [scope=sub|one|base]
 [attrs=<attr list>]
 [exattrs=<attr list>]
 [attrsonly]
 [sizelimit=<limit>]
 [timelimit=<limit>]
 [schemachecking=on|off]
 [bindmethod=simple|sasl]
 [binddn=<DN>]
 [saslmech=<mech>]
 [authcid=<identity>]
 [authzid=<identity>]
 [credentials=<passwd>]
 [realm=<realm>]
 [secprops=<properties>]
 [starttls=yes|critical]
 [tls_cert=<file>]
 [tls_key=<file>]
 [tls_cacert=<file>]
 [tls_cacertdir=<path>]
 [tls_reqcert=never|allow|try|demand]
 [tls_cipher_suite=<ciphers>]
 [tls_crlcheck=none|peer|all]
 [logbase=<base DN>]
 [logfilter=<filter str>]
 [syncdata=default|accesslog|changelog]

This directive specifies the current database as a consumer of the provider content by establishing the current
slapd(8) as a replication consumer site running a syncrepl replication engine. The provider database is located
at the provider site specified by the provider parameter. The consumer database is kept up-to-date with the
provider content using the LDAP Content Synchronization protocol. See RFC4533 for more information on
the protocol.

The rid parameter is used for identification of the current syncrepl directive within the replication consumer
server, where <replica ID> uniquely identifies the syncrepl specification described by the current syncrepl
directive. <replica ID> is non-negative and is no more than three decimal digits in length.

The provider parameter specifies the replication provider site containing the provider content as an LDAP
URI. The provider parameter specifies a scheme, a host and optionally a port where the provider slapd
instance can be found. Either a domain name or IP address may be used for <hostname>. Examples are
ldap://provider.example.com:389 or ldaps://192.168.1.1:636. If <port> is not given, the standard
LDAP port number (389 or 636) is used. Note that the syncrepl uses a consumer-initiated protocol, and hence
its specification is located on the consumer.

The content of the syncrepl consumer is defined using a search specification as its result set. The consumer
slapd will send search requests to the provider slapd according to the search specification. The search
specification includes searchbase, scope, filter, attrs, exattrs, attrsonly, sizelimit, and timelimit

OpenLDAP Software 2.5 Administrator's Guide

30

https://www.rfc-editor.org/rfc/rfc4533.txt

parameters as in the normal search specification. The searchbase parameter has no default value and must
always be specified. The scope defaults to sub, the filter defaults to (objectclass=*), attrs defaults to
"*,+" to replicate all user and operational attributes, and attrsonly is unset by default. Both sizelimit and
timelimit default to "unlimited", and only positive integers or "unlimited" may be specified. The exattrs
option may also be used to specify attributes that should be omitted from incoming entries.

The LDAP Content Synchronization protocol has two operation types: refreshOnly and
refreshAndPersist. The operation type is specified by the type parameter. In the refreshOnly operation,
the next synchronization search operation is periodically rescheduled at an interval time after each
synchronization operation finishes. The interval is specified by the interval parameter. It is set to one day by
default. In the refreshAndPersist operation, a synchronization search remains persistent in the provider
slapd instance. Further updates to the provider will generate searchResultEntry to the consumer slapd as
the search responses to the persistent synchronization search.

If an error occurs during replication, the consumer will attempt to reconnect according to the retry parameter
which is a list of the <retry interval> and <# of retries> pairs. For example, retry="60 10 300 3" lets the
consumer retry every 60 seconds for the first 10 times and then retry every 300 seconds for the next three
times before stop retrying. + in <# of retries> means indefinite number of retries until success.

The schema checking can be enforced at the LDAP Sync consumer site by turning on the schemachecking
parameter. If it is turned on, every replicated entry will be checked for its schema as the entry is stored on the
consumer. Every entry in the consumer should contain those attributes required by the schema definition. If it
is turned off, entries will be stored without checking schema conformance. The default is off.

The binddn parameter gives the DN to bind as for the syncrepl searches to the provider slapd. It should be a
DN which has read access to the replication content in the provider database.

The bindmethod is simple or sasl, depending on whether simple password-based authentication or SASL
authentication is to be used when connecting to the provider slapd instance.

Simple authentication should not be used unless adequate data integrity and confidentiality protections are in
place (e.g. TLS or IPsec). Simple authentication requires specification of binddn and credentials
parameters.

SASL authentication is generally recommended. SASL authentication requires specification of a mechanism
using the saslmech parameter. Depending on the mechanism, an authentication identity and/or credentials can
be specified using authcid and credentials, respectively. The authzid parameter may be used to specify
an authorization identity.

The realm parameter specifies a realm which a certain mechanisms authenticate the identity within. The
secprops parameter specifies Cyrus SASL security properties.

The starttls parameter specifies use of the StartTLS extended operation to establish a TLS session before
authenticating to the provider. If the critical argument is supplied, the session will be aborted if the
StartTLS request fails. Otherwise the syncrepl session continues without TLS. The tls_reqcert setting defaults
to "demand" and the other TLS settings default to the same as the main slapd TLS settings.

Rather than replicating whole entries, the consumer can query logs of data modifications. This mode of
operation is referred to as delta syncrepl. In addition to the above parameters, the logbase and logfilter
parameters must be set appropriately for the log that will be used. The syncdata parameter must be set to
either "accesslog" if the log conforms to the slapo-accesslog(5) log format, or "changelog" if the log

OpenLDAP Software 2.5 Administrator's Guide

31

conforms to the obsolete changelog format. If the syncdata parameter is omitted or set to "default" then the
log parameters are ignored.

The syncrepl replication mechanism is supported by the mdb backend.

See the LDAP Sync Replication chapter of this guide for more information on how to use this directive.

5.2.5.9. olcTimeLimit: <integer>

This directive specifies the maximum number of seconds (in real time) slapd will spend answering a search
request. If a request is not finished in this time, a result indicating an exceeded timelimit will be returned.

Default:

 olcTimeLimit: 3600

See the Limits section of this guide and slapd-config(5) for more details.

5.2.5.10. olcUpdateref: <URL>

This directive is only applicable in a replica (or shadow) slapd(8) instance. It specifies the URL to return to
clients which submit update requests upon the replica. If specified multiple times, each URL is provided.

Example:

 olcUpdateref: ldap://provider.example.net

5.2.5.11. Sample Entries

dn: olcDatabase=frontend,cn=config
objectClass: olcDatabaseConfig
objectClass: olcFrontendConfig
olcDatabase: frontend
olcReadOnly: FALSE

dn: olcDatabase=config,cn=config
objectClass: olcDatabaseConfig
olcDatabase: config
olcRootDN: cn=Manager,dc=example,dc=com

5.2.6. MDB Backend Directives

Directives in this category only apply to the MDB database backend. They will apply to all "database mdb"
instances in the configuration. For a complete reference of MDB backend configuration directives, see
slapd-mdb(5).

5.2.6.1. olcBkMdbIdlExp <exponent>

Specify a power of 2 for the maximum size of an index slot. The default is 16, yielding a maximum slot size
of 2^16 or 65536. The specified value must be in the range of 16-30.

This setting helps with the case where certain search filters are slow to return results due to an index slot
having collapsed to a range value. This occurs when the number of candidate entries that match the filter for

OpenLDAP Software 2.5 Administrator's Guide

32

the index slot exceed the configured slot size.

If this setting is decreased on a server with existing MDB databases, each db will immediately need its indices
to be rebuilt while slapd is offline with the "slapindex -q -t" command.

If this setting is increased on a server with existing MDB databases, each db will need its indices rebuilt to
take advantage of the change for indices that have already been converted to ranges.

5.2.7. MDB Database Directives

Directives in this category apply to the MDB database backend. They are used in an olcDatabase entry in
addition to the generic database directives defined above. For a complete reference of MDB configuration
directives, see slapd-mdb(5). In addition to the olcDatabaseConfig objectClass, MDB database entries must
have the olcMdbConfig objectClass.

5.2.7.1. olcDbDirectory: <directory>

This directive specifies the directory where the MDB files containing the database and associated indices live.

Default:

 olcDbDirectory: /usr/local/var/openldap-data

5.2.7.2. olcDbCheckpoint: <kbyte> <min>

This directive specifies the frequency for flushing the database disk buffers. This directive is only needed if
the olcDbNoSync option is TRUE. The checkpoint will occur if either <kbyte> data has been written or <min>
minutes have passed since the last checkpoint. Both arguments default to zero, in which case they are ignored.
When the <min> argument is non-zero, an internal task will run every <min> minutes to perform the
checkpoint. Note: currently the _kbyte_ setting is unimplemented.

Example:

 olcDbCheckpoint: 1024 10

5.2.7.3. olcDbEnvFlags: {nosync,nometasync,writemap,mapasync,nordahead}

This option specifies flags for finer-grained control of the LMDB library's operation.

nosync: This is exactly the same as the dbnosync directive.•
nometasync: Flush the data on a commit, but skip the sync of the meta page. This mode is slightly
faster than doing a full sync, but can potentially lose the last committed transaction if the operating
system crashes. If both nometasync and nosync are set, the nosync flag takes precedence.

•

writemap: Use a writable memory map instead of just read-only. This speeds up write operations but
makes the database vulnerable to corruption in case any bugs in slapd cause stray writes into the
mmap region.

•

mapasync: When using a writable memory map and performing flushes on each commit, use an
asynchronous flush instead of a synchronous flush (the default). This option has no effect if writemap
has not been set. It also has no effect if nosync is set.

•

nordahead: Turn off file readahead. Usually the OS performs readahead on every read request. This
usually boosts read performance but can be harmful to random access read performance if the

•

OpenLDAP Software 2.5 Administrator's Guide

33

system's memory is full and the DB is larger than RAM. This option is not implemented on Windows.

5.2.7.4. olcDbIndex: {<attrlist> | default} [pres,eq,approx,sub,none]

This directive specifies the indices to maintain for the given attribute. If only an <attrlist> is given, the
default indices are maintained. The index keywords correspond to the common types of matches that may be
used in an LDAP search filter.

Example:

 olcDbIndex: default pres,eq
 olcDbIndex: uid
 olcDbIndex: cn,sn pres,eq,sub
 olcDbIndex: objectClass eq

The first line sets the default set of indices to maintain to present and equality. The second line causes the
default (pres,eq) set of indices to be maintained for the uid attribute type. The third line causes present,
equality, and substring indices to be maintained for cn and sn attribute types. The fourth line causes an
equality index for the objectClass attribute type.

There is no index keyword for inequality matches. Generally these matches do not use an index. However,
some attributes do support indexing for inequality matches, based on the equality index.

A substring index can be more explicitly specified as subinitial, subany, or subfinal, corresponding to
the three possible components of a substring match filter. A subinitial index only indexes substrings that
appear at the beginning of an attribute value. A subfinal index only indexes substrings that appear at the end
of an attribute value, while subany indexes substrings that occur anywhere in a value.

Note that by default, setting an index for an attribute also affects every subtype of that attribute. E.g., setting
an equality index on the name attribute causes cn, sn, and every other attribute that inherits from name to be
indexed.

By default, no indices are maintained. It is generally advised that minimally an equality index upon
objectClass be maintained.

 olcDbIndex: objectClass eq

Additional indices should be configured corresponding to the most common searches that are used on the
database. Presence indexing should not be configured for an attribute unless the attribute occurs very rarely in
the database, and presence searches on the attribute occur very frequently during normal use of the directory.
Most applications don't use presence searches, so usually presence indexing is not very useful.

If this setting is changed while slapd is running, an internal task will be run to generate the changed index
data. All server operations can continue as normal while the indexer does its work. If slapd is stopped before
the index task completes, indexing will have to be manually completed using the slapindex tool.

5.2.7.5. olcDbMaxEntrySize: <bytes>

Specify the maximum size of an entry in bytes. Attempts to store an entry larger than this size will be rejected
with the error LDAP_ADMINLIMIT_EXCEEDED. The default is 0, which is unlimited.

OpenLDAP Software 2.5 Administrator's Guide

34

5.2.7.6. olcDbMaxReaders: <integer>

This directive specifies the maximum number of threads that may have concurrent read access to the database.
Tools such as slapcat count as a single thread, in addition to threads in any active slapd processes. The default
is 126.

5.2.7.7. olcDbMaxSize: <bytes>

This directive specifies the maximum size of the database in bytes. A memory map of this size is allocated at
startup time and the database will not be allowed to grow beyond this size. The default is 10485760 bytes
(10MB). This setting may be changed upward if the configured limit needs to be increased.

Note: It is important to set this to as large a value as possible, (relative to anticipated growth of the actual data
over time) since growing the size later may not be practical when the system is under heavy load.

5.2.7.8. olcDbMode: { <octal> | <symbolic> }

This directive specifies the file protection mode that newly created database index files should have. This can
be in the form 0600 or -rw-------

Default:

 olcDbMode: 0600

5.2.7.9. olcDbMultival: { <attrlist> | default } <integer> hi,<integer> lo

Specify the number of values for which a multivalued attribute is stored in a separate table. Normally entries
are stored as a single blob inside the database. When an entry gets very large or contains attributes with a very
large number of values, modifications on that entry may get very slow. Splitting the large attributes out to a
separate table can improve the performance of modification operations. The threshold is specified as a pair of
integers. If the number of values exceeds the hi threshold the values will be split out. If a modification deletes
enough values to bring an attribute below the lo threshold the values will be removed from the separate table
and merged back into the main entry blob. The threshold can be set for a specific list of attributes, or the
default can be configured for all other attributes. The default value for both hi and lo thresholds is
UINT_MAX, which keeps all attributes in the main blob.

In addition to increasing write performance of operations the use of multival can also decrease fragmentation
of the primary MDB database.

5.2.7.10. olcDbRtxnsize: <entries>

This directive specifies the maximum number of entries to process in a single read transaction when executing
a large search. Long-lived read transactions prevent old database pages from being reused in write
transactions, and so can cause significant growth of the database file when there is heavy write traffic. This
setting causes the read transaction in large searches to be released and reacquired after the given number of
entries has been read, to give writers the opportunity to reclaim old database pages. The default is 10000.

5.2.7.11. olcDbSearchStack: <integer>

Specify the depth of the stack used for search filter evaluation. Search filters are evaluated on a stack to
accommodate nested AND / OR clauses. An individual stack is allocated for each server thread. The depth of the

OpenLDAP Software 2.5 Administrator's Guide

35

stack determines how complex a filter can be evaluated without requiring any additional memory allocation.
Filters that are nested deeper than the search stack depth will cause a separate stack to be allocated for that
particular search operation. These separate allocations can have a major negative impact on server
performance, but specifying too much stack will also consume a great deal of memory. Each search uses
512K bytes per level on a 32-bit machine, or 1024K bytes per level on a 64-bit machine. The default stack
depth is 16, thus 8MB or 16MB per thread is used on 32 and 64 bit machines, respectively. Also the 512KB
size of a single stack slot is set by a compile-time constant which may be changed if needed; the code must be
recompiled for the change to take effect.

Default:

 olcDbSearchStack: 16

5.2.7.12. olcDbNosync: { TRUE | FALSE }

This directive causes on-disk database contents to not be immediately synchronized with in memory changes
upon change. Setting this option to TRUE may improve performance at the expense of data integrity.

5.2.7.13. Sample Entry

dn: olcDatabase=mdb,cn=config
objectClass: olcDatabaseConfig
objectClass: olcMdbConfig
olcDatabase: mdb
olcSuffix: dc=example,dc=com
olcDbDirectory: /usr/local/var/openldap-data
olcDbIndex: objectClass eq

5.3. Configuration Example

The following is an example configuration, interspersed with explanatory text. It defines two databases to
handle different parts of the X.500 tree; both are MDB database instances. The line numbers shown are
provided for reference only and are not included in the actual file. First, the global configuration section:

 1. # example config file - global configuration entry
 2. dn: cn=config
 3. objectClass: olcGlobal
 4. cn: config
 5. olcReferral: ldap://root.openldap.org
 6.

Line 1 is a comment. Lines 2-4 identify this as the global configuration entry. The olcReferral: directive on
line 5 means that queries not local to one of the databases defined below will be referred to the LDAP server
running on the standard port (389) at the host root.openldap.org. Line 6 is a blank line, indicating the end
of this entry.

 7. # internal schema
 8. dn: cn=schema,cn=config
 9. objectClass: olcSchemaConfig
 10. cn: schema
 11.

Line 7 is a comment. Lines 8-10 identify this as the root of the schema subtree. The actual schema definitions

OpenLDAP Software 2.5 Administrator's Guide

36

in this entry are hardcoded into slapd so no additional attributes are specified here. Line 11 is a blank line,
indicating the end of this entry.

 12. # include the core schema
 13. include: file:///usr/local/etc/openldap/schema/core.ldif
 14.

Line 12 is a comment. Line 13 is an LDIF include directive which accesses the core schema definitions in
LDIF format. Line 14 is a blank line.

Next comes the database definitions. The first database is the special frontend database whose settings are
applied globally to all the other databases.

 15. # global database parameters
 16. dn: olcDatabase=frontend,cn=config
 17. objectClass: olcDatabaseConfig
 18. olcDatabase: frontend
 19. olcAccess: to * by * read
 20.

Line 15 is a comment. Lines 16-18 identify this entry as the global database entry. Line 19 is a global access
control. It applies to all entries (after any applicable database-specific access controls). Line 20 is a blank line.

The next entry defines the config backend.

 21. # set a rootpw for the config database so we can bind.
 22. # deny access to everyone else.
 23. dn: olcDatabase=config,cn=config
 24. objectClass: olcDatabaseConfig
 25. olcDatabase: config
 26. olcRootPW: {SSHA}XKYnrjvGT3wZFQrDD5040US592LxsdLy
 27. olcAccess: to * by * none
 28.

Lines 21-22 are comments. Lines 23-25 identify this entry as the config database entry. Line 26 defines the
super-user password for this database. (The DN defaults to "cn=config".) Line 27 denies all access to this
database, so only the super-user will be able to access it. (This is already the default access on the config
database. It is just listed here for illustration, and to reiterate that unless a means to authenticate as the
super-user is explicitly configured, the config database will be inaccessible.)

Line 28 is a blank line.

The next entry defines an MDB backend that will handle queries for things in the "dc=example,dc=com"
portion of the tree. Indices are to be maintained for several attributes, and the userPassword attribute is to be
protected from unauthorized access.

 29. # MDB definition for example.com
 30. dn: olcDatabase=mdb,cn=config
 31. objectClass: olcDatabaseConfig
 32. objectClass: olcMdbConfig
 33. olcDatabase: mdb
 34. olcSuffix: dc=example,dc=com
 35. olcDbDirectory: /usr/local/var/openldap-data
 36. olcRootDN: cn=Manager,dc=example,dc=com
 37. olcRootPW: secret

OpenLDAP Software 2.5 Administrator's Guide

37

 38. olcDbIndex: uid pres,eq
 39. olcDbIndex: cn,sn pres,eq,approx,sub
 40. olcDbIndex: objectClass eq
 41. olcAccess: to attrs=userPassword
 42. by self write
 43. by anonymous auth
 44. by dn.base="cn=Admin,dc=example,dc=com" write
 45. by * none
 46. olcAccess: to *
 47. by self write
 48. by dn.base="cn=Admin,dc=example,dc=com" write
 49. by * read
 50.

Line 29 is a comment. Lines 30-33 identify this entry as a MDB database configuration entry. Line 34
specifies the DN suffix for queries to pass to this database. Line 35 specifies the directory in which the
database files will live.

Lines 36 and 37 identify the database super-user entry and associated password. This entry is not subject to
access control or size or time limit restrictions.

Lines 38 through 40 indicate the indices to maintain for various attributes.

Lines 41 through 49 specify access control for entries in this database. For all applicable entries, the
userPassword attribute is writable by the entry itself and by the "admin" entry. It may be used for
authentication/authorization purposes, but is otherwise not readable. All other attributes are writable by the
entry and the "admin" entry, but may be read by all users (authenticated or not).

Line 50 is a blank line, indicating the end of this entry.

The next entry defines another MDB database. This one handles queries involving the dc=example,dc=net
subtree but is managed by the same entity as the first database. Note that without line 60, the read access
would be allowed due to the global access rule at line 19.

 51. # MDB definition for example.net
 52. dn: olcDatabase=mdb,cn=config
 53. objectClass: olcDatabaseConfig
 54. objectClass: olcMdbConfig
 55. olcDatabase: mdb
 56. olcSuffix: dc=example,dc=net
 57. olcDbDirectory: /usr/local/var/openldap-data-net
 58. olcRootDN: cn=Manager,dc=example,dc=com
 59. olcDbIndex: objectClass eq
 60. olcAccess: to * by users read

5.4. Converting old style slapd.conf(5) file to cn=config format

Before converting to the cn=config format you should make sure that the config backend is properly
configured in your existing config file. While the config backend is always present inside slapd, by default it
is only accessible by its rootDN, and there are no default credentials assigned so unless you explicitly
configure a means to authenticate to it, it will be unusable.

If you do not already have a database config section, add something like this to the end of slapd.conf

OpenLDAP Software 2.5 Administrator's Guide

38

 database config
 rootpw VerySecret

Note: Since the config backend can be used to load arbitrary code into the slapd process, it is extremely
important to carefully guard whatever credentials are used to access it. Since simple passwords are vulnerable
to password guessing attacks, it is usually better to omit the rootpw and only use SASL authentication for the
config rootDN.

An existing slapd.conf(5) file can be converted to the new format using slaptest(8) or any of the slap tools:

 slaptest -f /usr/local/etc/openldap/slapd.conf -F /usr/local/etc/openldap/slapd.d

Test that you can access entries under cn=config using the default rootdn and the rootpw configured above:

 ldapsearch -x -D cn=config -w VerySecret -b cn=config

You can then discard the old slapd.conf(5) file. Make sure to launch slapd(8) with the -F option to specify the
configuration directory if you are not using the default directory path.

Note: When converting from the slapd.conf format to slapd.d format, any included files will also be integrated
into the resulting configuration database.

5.5. Recovering from a broken configuration

If the server using cn=config does not start, either because the configuration does not represent the current
version or because it has been corrupted, these actions are available, in the order of decreasing preference.

Make sure you have made a backup of the "broken" version before you attempt any of these:

5.5.1. Generate an ldif version of the configuration database and reload from
that

Most of the time, the configuration can be parsed and a text version generated with slapcat(8):

 slapcat -F /usr/local/etc/openldap/slapd.d -n0 -l extracted_config.ldif

After you have backed up and removed the old configuration database contents, this output ldif can be
hand-edited to adjust or remove the offending entries and imported again:

 slapadd -F /usr/local/etc/openldap/slapd.d -l updated_config.ldif
 slaptest -F /usr/local/etc/openldap/slapd.d

5.5.2. Modify config in-place

If the configuration can be parsed and you know exactly what you need to do, you can use slapmodify(8) to
effect the required changes directly:

 slapmodify -F /usr/local/etc/openldap/slapd.d
 dn: ..., cn=config
 changetype: ...
 ...

OpenLDAP Software 2.5 Administrator's Guide

39

5.5.3. Recover with plain back-ldif

If the configuration contains items that slapd(8) cannot process as a cn=config database at all, the last resort is
to disable schema checking and operate on it as a regular back-ldif database. This might cease to work with
future versions of OpenLDAP without notice, attempt this only when all of the above fail.

First, create a directory to serve as the hosting DB and create the structure:

 mkdir ./recovery ./recovery/cn=recovery
 cp /usr/local/etc/openldap/slapd.d/cn=config.ldif ./recovery/cn=recovery
 cp -r /usr/local/etc/openldap/slapd.d/cn=config ./recovery/cn=recovery

Or, if you have already backed up your old configuration, you can symlink it into place:

 mkdir ./recovery
 ln -s /usr/local/etc/openldap/slapd.d ./recovery/cn=recovery

Next, create a trivial slapd.conf(5) to access the new database:

 database ldif
 suffix cn=recovery
 directory ./recovery/

Note the change of suffix, cn=config is hardcoded to correspond to an active config database, so we have to
home it one level deeper - at cn=config,cn=recovery.

Now you can use slapmodify(8) to modify the database, it is most likely you will need to run with schema
checking disabled:

 slapmodify -f ./recovery.conf -s

You can test the validity of your config with slaptest(8):

 slaptest -F ./recovery/cn=recovery

And generate a full ldif with slapcat(8):

 slapcat -F ./recovery/cn=recovery -n0

OpenLDAP Software 2.5 Administrator's Guide

40

6. The slapd Configuration File
This chapter describes configuring slapd(8) via the slapd.conf(5) configuration file. slapd.conf(5) has been
deprecated and should only be used if your site requires one of the backends that hasn't yet been updated to
work with the newer slapd-config(5) system. Configuring slapd(8) via slapd-config(5) is described in the
previous chapter.

The slapd.conf(5) file is normally installed in the /usr/local/etc/openldap directory. An alternate
configuration file location can be specified via a command-line option to slapd(8).

6.1. Configuration File Format

The slapd.conf(5) file consists of three types of configuration information: global, backend specific, and
database specific. Global information is specified first, followed by information associated with a particular
backend type, which is then followed by information associated with a particular database instance. Global
directives can be overridden in backend and/or database directives, and backend directives can be overridden
by database directives.

Blank lines and comment lines beginning with a '#' character are ignored. If a line begins with whitespace, it is
considered a continuation of the previous line (even if the previous line is a comment).

The general format of slapd.conf is as follows:

 # global configuration directives
 <global config directives>

 # backend definition
 backend <typeA>
 <backend-specific directives>

 # first database definition & config directives
 database <typeA>
 <database-specific directives>

 # second database definition & config directives
 database <typeB>
 <database-specific directives>

 # second database definition & config directives
 database <typeA>
 <database-specific directives>

 # subsequent backend & database definitions & config directives
 ...

A configuration directive may take arguments. If so, they are separated by whitespace. If an argument
contains whitespace, the argument should be enclosed in double quotes "like this". If an argument contains
a double quote or a backslash character `\', the character should be preceded by a backslash character `\'.

The distribution contains an example configuration file that will be installed in the
/usr/local/etc/openldap directory. A number of files containing schema definitions (attribute types and
object classes) are also provided in the /usr/local/etc/openldap/schema directory.

41

6.2. Configuration File Directives

This section details commonly used configuration directives. For a complete list, see the slapd.conf(5) manual
page. This section separates the configuration file directives into global, backend-specific and data-specific
categories, describing each directive and its default value (if any), and giving an example of its use.

6.2.1. Global Directives

Directives described in this section apply to all backends and databases unless specifically overridden in a
backend or database definition. Arguments that should be replaced by actual text are shown in brackets <>.

6.2.1.1. access to <what> [by <who> [<accesslevel>] [<control>]]+

This directive grants access (specified by <accesslevel>) to a set of entries and/or attributes (specified by
<what>) by one or more requestors (specified by <who>). See the Access Control section of this guide for
basic usage.

Note: If no access directives are specified, the default access control policy, access to * by * read,
allows all both authenticated and anonymous users read access.

6.2.1.2. attributetype <RFC4512 Attribute Type Description>

This directive defines an attribute type. Please see the Schema Specification chapter for information regarding
how to use this directive.

6.2.1.3. idletimeout <integer>

Specify the number of seconds to wait before forcibly closing an idle client connection. An idletimeout of 0,
the default, disables this feature.

6.2.1.4. include <filename>

This directive specifies that slapd should read additional configuration information from the given file before
continuing with the next line of the current file. The included file should follow the normal slapd config file
format. The file is commonly used to include files containing schema specifications.

Note: You should be careful when using this directive - there is no small limit on the number of nested
include directives, and no loop detection is done.

6.2.1.5. loglevel <level>

This directive specifies the level at which log statements and operation statistics should be sent to syslog
(currently logged to the syslogd(8) LOG_LOCAL4 facility). You must have configured OpenLDAP
--enable-debug (the default) for this to work, except for the two statistics levels, which are always enabled.
Log levels may be specified as integers or by keyword. Multiple log levels may be used and the levels are
additive. The possible values for <integer> are:

Table 6.1: Logging Levels

OpenLDAP Software 2.5 Administrator's Guide

42

https://www.rfc-editor.org/rfc/rfc4512.txt

Level Keyword Description
-1 any enable all debugging
0 no debugging
1 (0x1 trace) trace function calls
2 (0x2 packets) debug packet handling
4 (0x4 args) heavy trace debugging
8 (0x8 conns) connection management

16 (0x10 BER) print out packets sent and received
32 (0x20 filter) search filter processing
64 (0x40 config) configuration processing

128 (0x80 ACL) access control list processing
256 (0x100 stats) stats log connections/operations/results
512 (0x200 stats2) stats log entries sent

1024 (0x400 shell) print communication with shell backends
2048 (0x800 parse) print entry parsing debugging

16384 (0x4000 sync) syncrepl consumer processing
32768 (0x8000 none) only messages that get logged regardless of configured log level

The desired log level can be input as a single integer that combines the (ORed) desired levels, both in decimal
or in hexadecimal notation, as a list of integers (that are ORed internally), or as a list of the names that are
shown between brackets, such that

 loglevel 129
 loglevel 0x81
 loglevel 128 1
 loglevel 0x80 0x1
 loglevel acl trace

are equivalent.

Examples:

 loglevel -1

This will enable all log levels.

 loglevel conns filter

Just log the connection and search filter processing.

 loglevel none

Log those messages that are logged regardless of the configured loglevel. This differs from setting the log
level to 0, when no logging occurs. At least the None level is required to have high priority messages logged.

Default:

 loglevel stats

Basic stats logging is configured by default.

OpenLDAP Software 2.5 Administrator's Guide

43

6.2.1.6. objectclass <RFC4512 Object Class Description>

This directive defines an object class. Please see the Schema Specification chapter for information regarding
how to use this directive.

6.2.1.7. referral <URI>

This directive specifies the referral to pass back when slapd cannot find a local database to handle a request.

Example:

 referral ldap://root.openldap.org

This will refer non-local queries to the global root LDAP server at the OpenLDAP Project. Smart LDAP
clients can re-ask their query at that server, but note that most of these clients are only going to know how to
handle simple LDAP URLs that contain a host part and optionally a distinguished name part.

6.2.1.8. sizelimit <integer>

This directive specifies the maximum number of entries to return from a search operation.

Default:

 sizelimit 500

See the Limits section of this guide and slapd.conf(5) for more details.

6.2.1.9. timelimit <integer>

This directive specifies the maximum number of seconds (in real time) slapd will spend answering a search
request. If a request is not finished in this time, a result indicating an exceeded timelimit will be returned.

Default:

 timelimit 3600

See the Limits section of this guide and slapd.conf(5) for more details.

6.2.2. General Backend Directives

Directives in this section apply only to the backend in which they are defined. They are supported by every
type of backend. Backend directives apply to all databases instances of the same type and, depending on the
directive, may be overridden by database directives.

6.2.2.1. backend <type>

This directive marks the beginning of a backend declaration. <type> should be one of the supported backend
types listed in Table 6.2.

Table 6.2: Database Backends

OpenLDAP Software 2.5 Administrator's Guide

44

https://www.rfc-editor.org/rfc/rfc4512.txt

Types Description
asyncmet a Asynchronous Metadirectory backend
config Slapd configuration backend
dnssrv DNS SRV backend
ldap Lightweight Directory Access Protocol (Proxy) backend
ldif Lightweight Data Interchange Format backend
mdb Memory-Mapped DB backend
meta Metadirectory backend
monitor Monitor backend
ndb MySQL NDB backend
null Null backend
passwd Provides read-only access to passwd(5)
perl Perl Programmable backend
relay Relay backend
sock Socket backend
sql SQL Programmable backend
wt WiredTiger backend

Example:

 backend mdb
 idlexp 16

This marks the beginning of a new MDB backend definition. At present, only back-mdb implements any
options of this type, so this setting is not needed for any other backends.

6.2.3. General Database Directives

Directives in this section apply only to the database in which they are defined. They are supported by every
type of database.

6.2.3.1. database <type>

This directive marks the beginning of a database instance declaration. <type> should be one of the supported
backend types listed in Table 6.2.

Example:

 database mdb

This marks the beginning of a new MDB database instance declaration.

6.2.3.2. limits <selector> <limit> [<limit> [...]]

Specify time and size limits based on the operation's initiator or base DN.

See the Limits section of this guide and slapd.conf(5) for more details.

OpenLDAP Software 2.5 Administrator's Guide

45

6.2.3.3. readonly { on | off }

This directive puts the database into "read-only" mode. Any attempts to modify the database will return an
"unwilling to perform" error. If set on a consumer, modifications sent by syncrepl will still occur.

Default:

 readonly off

6.2.3.4. rootdn <DN>

This directive specifies the DN that is not subject to access control or administrative limit restrictions for
operations on this database. The DN need not refer to an entry in this database or even in the directory. The
DN may refer to a SASL identity.

Entry-based Example:

 rootdn "cn=Manager,dc=example,dc=com"

SASL-based Example:

 rootdn "uid=root,cn=example.com,cn=digest-md5,cn=auth"

See the SASL Authentication section for information on SASL authentication identities.

6.2.3.5. rootpw <password>

This directive can be used to specifies a password for the DN for the rootdn (when the rootdn is set to a DN
within the database).

Example:

 rootpw secret

It is also permissible to provide hash of the password in RFC2307 form. slappasswd(8) may be used to
generate the password hash.

Example:

 rootpw {SSHA}ZKKuqbEKJfKSXhUbHG3fG8MDn9j1v4QN

The hash was generated using the command slappasswd -s secret.

6.2.3.6. suffix <dn suffix>

This directive specifies the DN suffix of queries that will be passed to this backend database. Multiple suffix
lines can be given, and at least one is required for each database definition.

Example:

 suffix "dc=example,dc=com"

OpenLDAP Software 2.5 Administrator's Guide

46

https://www.rfc-editor.org/rfc/rfc2307.txt

Queries with a DN ending in "dc=example,dc=com" will be passed to this backend.

Note: When the backend to pass a query to is selected, slapd looks at the suffix line(s) in each database
definition in the order they appear in the file. Thus, if one database suffix is a prefix of another, it must appear
after it in the config file.

6.2.3.7. syncrepl

 syncrepl rid=<replica ID>
 provider=ldap[s]://<hostname>[:port]
 searchbase=<base DN>
 [type=refreshOnly|refreshAndPersist]
 [interval=dd:hh:mm:ss]
 [retry=[<retry interval> <# of retries>]+]
 [filter=<filter str>]
 [scope=sub|one|base]
 [attrs=<attr list>]
 [exattrs=<attr list>]
 [attrsonly]
 [sizelimit=<limit>]
 [timelimit=<limit>]
 [schemachecking=on|off]
 [network-timeout=<seconds>]
 [timeout=<seconds>]
 [bindmethod=simple|sasl]
 [binddn=<DN>]
 [saslmech=<mech>]
 [authcid=<identity>]
 [authzid=<identity>]
 [credentials=<passwd>]
 [realm=<realm>]
 [secprops=<properties>]
 [keepalive=<idle>:<probes>:<interval>]
 [starttls=yes|critical]
 [tls_cert=<file>]
 [tls_key=<file>]
 [tls_cacert=<file>]
 [tls_cacertdir=<path>]
 [tls_reqcert=never|allow|try|demand]
 [tls_cipher_suite=<ciphers>]
 [tls_crlcheck=none|peer|all]
 [tls_protocol_min=<major>[.<minor>]]
 [suffixmassage=<real DN>]
 [logbase=<base DN>]
 [logfilter=<filter str>]
 [syncdata=default|accesslog|changelog]

This directive specifies the current database as a consumer of the provider content by establishing the current
slapd(8) as a replication consumer site running a syncrepl replication engine. The provider database is located
at the replication provider site specified by the provider parameter. The consumer database is kept up-to-date
with the provider content using the LDAP Content Synchronization protocol. See RFC4533 for more
information on the protocol.

The rid parameter is used for identification of the current syncrepl directive within the replication consumer
server, where <replica ID> uniquely identifies the syncrepl specification described by the current syncrepl
directive. <replica ID> is non-negative and is no more than three decimal digits in length.

OpenLDAP Software 2.5 Administrator's Guide

47

https://www.rfc-editor.org/rfc/rfc4533.txt

The provider parameter specifies the replication provider site containing the provider content as an LDAP
URI. The provider parameter specifies a scheme, a host and optionally a port where the provider slapd
instance can be found. Either a domain name or IP address may be used for <hostname>. Examples are
ldap://provider.example.com:389 or ldaps://192.168.1.1:636. If <port> is not given, the standard
LDAP port number (389 or 636) is used. Note that the syncrepl uses a consumer-initiated protocol, and hence
its specification is located on the consumer.

The content of the syncrepl consumer is defined using a search specification as its result set. The consumer
slapd will send search requests to the provider slapd according to the search specification. The search
specification includes searchbase, scope, filter, attrs, exattrs, attrsonly, sizelimit, and timelimit
parameters as in the normal search specification. The searchbase parameter has no default value and must
always be specified. The scope defaults to sub, the filter defaults to (objectclass=*), attrs defaults to
"*,+" to replicate all user and operational attributes, and attrsonly is unset by default. Both sizelimit and
timelimit default to "unlimited", and only positive integers or "unlimited" may be specified. The exattrs
option may also be used to specify attributes that should be omitted from incoming entries.

The LDAP Content Synchronization protocol has two operation types: refreshOnly and
refreshAndPersist. The operation type is specified by the type parameter. In the refreshOnly operation,
the next synchronization search operation is periodically rescheduled at an interval time after each
synchronization operation finishes. The interval is specified by the interval parameter. It is set to one day by
default. In the refreshAndPersist operation, a synchronization search remains persistent in the provider
slapd instance. Further updates to the provider will generate searchResultEntry to the consumer slapd as
the search responses to the persistent synchronization search.

If an error occurs during replication, the consumer will attempt to reconnect according to the retry parameter
which is a list of the <retry interval> and <# of retries> pairs. For example, retry="60 10 300 3" lets the
consumer retry every 60 seconds for the first 10 times and then retry every 300 seconds for the next three
times before stop retrying. + in <# of retries> means indefinite number of retries until success.

The schema checking can be enforced at the LDAP Sync consumer site by turning on the schemachecking
parameter. If it is turned on, every replicated entry will be checked for its schema as the entry is stored on the
consumer. Every entry in the consumer should contain those attributes required by the schema definition. If it
is turned off, entries will be stored without checking schema conformance. The default is off.

The network-timeout parameter sets how long the consumer will wait to establish a network connection to
the provider. Once a connection is established, the timeout parameter determines how long the consumer will
wait for the initial Bind request to complete. The defaults for these parameters come from ldap.conf(5).

The binddn parameter gives the DN to bind as for the syncrepl searches to the provider slapd. It should be a
DN which has read access to the replication content in the provider database.

The bindmethod is simple or sasl, depending on whether simple password-based authentication or SASL
authentication is to be used when connecting to the provider slapd instance.

Simple authentication should not be used unless adequate data integrity and confidentiality protections are in
place (e.g. TLS or IPsec). Simple authentication requires specification of binddn and credentials
parameters.

SASL authentication is generally recommended. SASL authentication requires specification of a mechanism
using the saslmech parameter. Depending on the mechanism, an authentication identity and/or credentials can
be specified using authcid and credentials, respectively. The authzid parameter may be used to specify

OpenLDAP Software 2.5 Administrator's Guide

48

an authorization identity.

The realm parameter specifies a realm which a certain mechanisms authenticate the identity within. The
secprops parameter specifies Cyrus SASL security properties.

The keepalive parameter sets the values of idle, probes, and interval used to check whether a socket is alive;
idle is the number of seconds a connection needs to remain idle before TCP starts sending keepalive probes;
probes is the maximum number of keepalive probes TCP should send before dropping the connection; interval
is interval in seconds between individual keepalive probes. Only some systems support the customization of
these values; the keepalive parameter is ignored otherwise, and system-wide settings are used. For example,
keepalive="240:10:30" will send a keepalive probe 10 times, every 30 seconds, after 240 seconds of idle
activity. If no response to the probes is received, the connection will be dropped.

The starttls parameter specifies use of the StartTLS extended operation to establish a TLS session before
authenticating to the provider. If the critical argument is supplied, the session will be aborted if the
StartTLS request fails. Otherwise the syncrepl session continues without TLS. The tls_reqcert setting defaults
to "demand" and the other TLS settings default to the same as the main slapd TLS settings.

The suffixmassage parameter allows the consumer to pull entries from a remote directory whose DN suffix
differs from the local directory. The portion of the remote entries' DNs that matches the searchbase will be
replaced with the suffixmassage DN.

Rather than replicating whole entries, the consumer can query logs of data modifications. This mode of
operation is referred to as delta syncrepl. In addition to the above parameters, the logbase and logfilter
parameters must be set appropriately for the log that will be used. The syncdata parameter must be set to
either "accesslog" if the log conforms to the slapo-accesslog(5) log format, or "changelog" if the log
conforms to the obsolete changelog format. If the syncdata parameter is omitted or set to "default" then the
log parameters are ignored.

The syncrepl replication mechanism is supported by the mdb backend.

See the LDAP Sync Replication chapter of this guide for more information on how to use this directive.

6.2.3.8. updateref <URL>

This directive is only applicable in a replica (or shadow) slapd(8) instance. It specifies the URL to return to
clients which submit update requests upon the replica. If specified multiple times, each URL is provided.

Example:

 updateref ldap://provider.example.net

6.2.4. MDB Backend Directives

Directives in this category only apply to the MDB database backend. They will apply to all "database mdb"
instances in the configuration. For a complete reference of MDB backend configuration directives, see
slapd-mdb(5).

OpenLDAP Software 2.5 Administrator's Guide

49

6.2.4.1. idlexp <exponent>

Specify a power of 2 for the maximum size of an index slot. The default is 16, yielding a maximum slot size
of 2^16 or 65536. The specified value must be in the range of 16-30.

This setting helps with the case where certain search filters are slow to return results due to an index slot
having collapsed to a range value. This occurs when the number of candidate entries that match the filter for
the index slot exceed the configured slot size.

If this setting is decreased on a server with existing MDB databases, each db will immediately need its indices
to be rebuilt while slapd is offline with the "slapindex -q -t" command.

If this setting is increased on a server with existing MDB databases, each db will need its indices rebuilt to
take advantage of the change for indices that have already been converted to ranges.

6.2.5. MDB Database Directives

Directives in this category only apply to the MDB database backend. That is, they must follow a "database
mdb" line and come before any subsequent "backend" or "database" lines. For a complete reference of MDB
configuration directives, see slapd-mdb(5).

6.2.5.1. directory <directory>

This directive specifies the directory where the MDB files containing the database and associated indices live.

Default:

 directory /usr/local/var/openldap-data

6.2.5.2. checkpoint <kbyte> <min>

This directive specifies the frequency for flushing the database disk buffers. This directive is only needed if
the dbnosync option is TRUE. The checkpoint will occur if either <kbyte> data has been written or <min>
minutes have passed since the last checkpoint. Both arguments default to zero, in which case they are ignored.
When the <min> argument is non-zero, an internal task will run every <min> minutes to perform the
checkpoint. Note: currently the _kbyte_ setting is unimplemented.

Example:

 checkpoint: 1024 10

6.2.5.3. dbnosync: { TRUE | FALSE }

This directive causes on-disk database contents to not be immediately synchronized with in memory changes
upon change. Setting this option to TRUE may improve performance at the expense of data integrity.

6.2.5.4. envflags: {nosync,nometasync,writemap,mapasync,nordahead}

This option specifies flags for finer-grained control of the LMDB library's operation.

nosync: This is exactly the same as the dbnosync directive.•

OpenLDAP Software 2.5 Administrator's Guide

50

nometasync: Flush the data on a commit, but skip the sync of the meta page. This mode is slightly
faster than doing a full sync, but can potentially lose the last committed transaction if the operating
system crashes. If both nometasync and nosync are set, the nosync flag takes precedence.

•

writemap: Use a writable memory map instead of just read-only. This speeds up write operations but
makes the database vulnerable to corruption in case any bugs in slapd cause stray writes into the
mmap region.

•

mapasync: When using a writable memory map and performing flushes on each commit, use an
asynchronous flush instead of a synchronous flush (the default). This option has no effect if writemap
has not been set. It also has no effect if nosync is set.

•

nordahead: Turn off file readahead. Usually the OS performs readahead on every read request. This
usually boosts read performance but can be harmful to random access read performance if the
system's memory is full and the DB is larger than RAM. This option is not implemented on Windows.

•

6.2.5.5. index: {<attrlist> | default} [pres,eq,approx,sub,none]

This directive specifies the indices to maintain for the given attribute. If only an <attrlist> is given, the
default indices are maintained. The index keywords correspond to the common types of matches that may be
used in an LDAP search filter.

Example:

 index: default pres,eq
 index: uid
 index: cn,sn pres,eq,sub
 index: objectClass eq

The first line sets the default set of indices to maintain to present and equality. The second line causes the
default (pres,eq) set of indices to be maintained for the uid attribute type. The third line causes present,
equality, and substring indices to be maintained for cn and sn attribute types. The fourth line causes an
equality index for the objectClass attribute type.

There is no index keyword for inequality matches. Generally these matches do not use an index. However,
some attributes do support indexing for inequality matches, based on the equality index.

A substring index can be more explicitly specified as subinitial, subany, or subfinal, corresponding to
the three possible components of a substring match filter. A subinitial index only indexes substrings that
appear at the beginning of an attribute value. A subfinal index only indexes substrings that appear at the end
of an attribute value, while subany indexes substrings that occur anywhere in a value.

Note that by default, setting an index for an attribute also affects every subtype of that attribute. E.g., setting
an equality index on the name attribute causes cn, sn, and every other attribute that inherits from name to be
indexed.

By default, no indices are maintained. It is generally advised that minimally an equality index upon
objectClass be maintained.

 index: objectClass eq

Additional indices should be configured corresponding to the most common searches that are used on the
database. Presence indexing should not be configured for an attribute unless the attribute occurs very rarely in
the database, and presence searches on the attribute occur very frequently during normal use of the directory.
Most applications don't use presence searches, so usually presence indexing is not very useful.

OpenLDAP Software 2.5 Administrator's Guide

51

6.2.5.6. maxentrysize: <bytes>

Specify the maximum size of an entry in bytes. Attempts to store an entry larger than this size will be rejected
with the error LDAP_ADMINLIMIT_EXCEEDED. The default is 0, which is unlimited.

6.2.5.7. maxreaders: <integer>

This directive specifies the maximum number of threads that may have concurrent read access to the database.
Tools such as slapcat count as a single thread, in addition to threads in any active slapd processes. The default
is 126.

6.2.5.8. maxsize: <bytes>

This directive specifies the maximum size of the database in bytes. A memory map of this size is allocated at
startup time and the database will not be allowed to grow beyond this size. The default is 10485760 bytes
(10MB). This setting may be changed upward if the configured limit needs to be increased.

Note: It is important to set this to as large a value as possible, (relative to anticipated growth of the actual data
over time) since growing the size later may not be practical when the system is under heavy load.

6.2.5.9. mode: { <octal> | <symbolic> }

This directive specifies the file protection mode that newly created database index files should have. This can
be in the form 0600 or -rw-------

Default:

 mode: 0600

6.2.5.10. multival: { <attrlist> | default } <integer> hi,<integer> lo

Specify the number of values for which a multivalued attribute is stored in a separate table. Normally entries
are stored as a single blob inside the database. When an entry gets very large or contains attributes with a very
large number of values, modifications on that entry may get very slow. Splitting the large attributes out to a
separate table can improve the performance of modification operations. The threshold is specified as a pair of
integers. If the number of values exceeds the hi threshold the values will be split out. If a modification deletes
enough values to bring an attribute below the lo threshold the values will be removed from the separate table
and merged back into the main entry blob. The threshold can be set for a specific list of attributes, or the
default can be configured for all other attributes. The default value for both hi and lo thresholds is
UINT_MAX, which keeps all attributes in the main blob.

In addition to increasing write performance of operations the use of multival can also decrease fragmentation
of the primary MDB database.

6.2.5.11. rtxnsize: <entries>

This directive specifies the maximum number of entries to process in a single read transaction when executing
a large search. Long-lived read transactions prevent old database pages from being reused in write
transactions, and so can cause significant growth of the database file when there is heavy write traffic. This
setting causes the read transaction in large searches to be released and reacquired after the given number of
entries has been read, to give writers the opportunity to reclaim old database pages. The default is 10000.

OpenLDAP Software 2.5 Administrator's Guide

52

6.2.5.12. searchstack: <integer>

Specify the depth of the stack used for search filter evaluation. Search filters are evaluated on a stack to
accommodate nested AND / OR clauses. An individual stack is allocated for each server thread. The depth of the
stack determines how complex a filter can be evaluated without requiring any additional memory allocation.
Filters that are nested deeper than the search stack depth will cause a separate stack to be allocated for that
particular search operation. These separate allocations can have a major negative impact on server
performance, but specifying too much stack will also consume a great deal of memory. Each search uses
512K bytes per level on a 32-bit machine, or 1024K bytes per level on a 64-bit machine. The default stack
depth is 16, thus 8MB or 16MB per thread is used on 32 and 64 bit machines, respectively. Also the 512KB
size of a single stack slot is set by a compile-time constant which may be changed if needed; the code must be
recompiled for the change to take effect.

Default:

 searchstack: 16

6.2.5.13. Sample Entry

database mdb
suffix: "dc=example,dc=com"
directory: /usr/local/var/openldap-data
index: objectClass eq

6.3. Configuration File Example

The following is an example configuration file, interspersed with explanatory text. It defines two databases to
handle different parts of the X.500 tree; both are MDB database instances. The line numbers shown are
provided for reference only and are not included in the actual file. First, the global configuration section:

 1. # example config file - global configuration section
 2. include /usr/local/etc/schema/core.schema
 3. referral ldap://root.openldap.org
 4. access to * by * read

Line 1 is a comment. Line 2 includes another config file which contains core schema definitions. The
referral directive on line 3 means that queries not local to one of the databases defined below will be
referred to the LDAP server running on the standard port (389) at the host root.openldap.org.

Line 4 is a global access control. It applies to all entries (after any applicable database-specific access
controls).

The next section of the configuration file defines a MDB backend that will handle queries for things in the
"dc=example,dc=com" portion of the tree. The database is to be replicated to two replica slapds, one on
truelies, the other on judgmentday. Indices are to be maintained for several attributes, and the userPassword
attribute is to be protected from unauthorized access.

 5. # MDB definition for the example.com
 6. database mdb
 7. suffix "dc=example,dc=com"
 8. directory /usr/local/var/openldap-data
 9. rootdn "cn=Manager,dc=example,dc=com"
 10. rootpw secret

OpenLDAP Software 2.5 Administrator's Guide

53

 11. # indexed attribute definitions
 12. index uid pres,eq
 13. index cn,sn pres,eq,approx,sub
 14. index objectClass eq
 15. # database access control definitions
 16. access to attrs=userPassword
 17. by self write
 18. by anonymous auth
 19. by dn.base="cn=Admin,dc=example,dc=com" write
 20. by * none
 21. access to *
 22. by self write
 23. by dn.base="cn=Admin,dc=example,dc=com" write
 24. by * read

Line 5 is a comment. The start of the database definition is marked by the database keyword on line 6. Line 7
specifies the DN suffix for queries to pass to this database. Line 8 specifies the directory in which the database
files will live.

Lines 9 and 10 identify the database super-user entry and associated password. This entry is not subject to
access control or size or time limit restrictions.

Lines 12 through 14 indicate the indices to maintain for various attributes.

Lines 16 through 24 specify access control for entries in this database. For all applicable entries, the
userPassword attribute is writable by the entry itself and by the "admin" entry. It may be used for
authentication/authorization purposes, but is otherwise not readable. All other attributes are writable by the
entry and the "admin" entry, but may be read by all users (authenticated or not).

The next section of the example configuration file defines another MDB database. This one handles queries
involving the dc=example,dc=net subtree but is managed by the same entity as the first database. Note that
without line 39, the read access would be allowed due to the global access rule at line 4.

 33. # MDB definition for example.net
 34. database mdb
 35. suffix "dc=example,dc=net"
 36. directory /usr/local/var/openldap-data-net
 37. rootdn "cn=Manager,dc=example,dc=com"
 38. index objectClass eq
 39. access to * by users read

OpenLDAP Software 2.5 Administrator's Guide

54

7. Running slapd
slapd(8) is designed to be run as a standalone service. This allows the server to take advantage of caching,
manage concurrency issues with underlying databases, and conserve system resources. Running from inetd(8)
is NOT an option.

7.1. Command-Line Options

slapd(8) supports a number of command-line options as detailed in the manual page. This section details a few
commonly used options.

 -f <filename>

This option specifies an alternate configuration file for slapd. The default is normally
/usr/local/etc/openldap/slapd.conf.

 -F <slapd-config-directory>

Specifies the slapd configuration directory. The default is /usr/local/etc/openldap/slapd.d.

If both -f and -F are specified, the config file will be read and converted to config directory format and
written to the specified directory. If neither option is specified, slapd will attempt to read the default config
directory before trying to use the default config file. If a valid config directory exists then the default config
file is ignored. All of the slap tools that use the config options observe this same behavior.

 -h <URLs>

This option specifies alternative listener configurations. The default is ldap:/// which implies LDAP over
TCP on all interfaces on the default LDAP port 389. You can specify specific host-port pairs or other protocol
schemes (such as ldaps:// or ldapi://). slapd supports the HAProxy proxy protocol version 2, which
allows a load balancer or proxy server to provide the remote client IP address to slapd to be used for access
control or logging. Listeners configured using either pldap:/// or pldaps:/// URLS will only accept
connections that include the necessary proxy protocol header. Connections to the ports used by these listeners
should be restricted at the network level to only trusted load balancers or proxies to avoid spoofing of client IP
addresses by third parties.

URL Protocol Transport
ldap:/// LDAP TCP port 389
pldap:/// proxied LDAP TCP port 389
ldaps:/// LDAP over SSL TCP port 636
pldaps:/// proxied LDAP over SSL TCP port 636
ldapi:/// LDAP IPC (Unix-domain socket)
For example, -h "ldaps:// ldap://127.0.0.1:666" will create two listeners: one for the (non-standard)
ldaps:// scheme on all interfaces on the default ldaps:// port 636, and one for the standard ldap://
scheme on the localhost (loopback) interface on port 666. Hosts may be specified using using hostnames or
IPv4 or IPv6 addresses. Port values must be numeric.

For LDAP over IPC, the pathname of the Unix-domain socket can be encoded in the URL. Note that directory
separators must be URL-encoded, like any other characters that are special to URLs. Thus the socket

55

/usr/local/var/ldapi must be encoded as

 ldapi://%2Fusr%2Flocal%2Fvar%2Fldapi

ldapi: is described in detail in Using LDAP Over IPC Mechanisms [Chu-LDAPI]

Note that the ldapi:/// transport is not widely implemented: non-OpenLDAP clients may not be able to use it.

 -n <service-name>

This option specifies the service name used for logging and other purposes. The default service name is
slapd.

 -l <syslog-local-user>

This option specifies the local user for the syslog(8) facility. Values can be LOCAL0, LOCAL1, LOCAL2, ..., and
LOCAL7. The default is LOCAL4. This option may not be supported on all systems.

 -u user -g group

These options specify the user and group, respectively, to run as. user can be either a user name or uid. group
can be either a group name or gid.

 -r directory

This option specifies a run-time directory. slapd will chroot(2) to this directory after opening listeners but
before reading any configuration files or initializing any backends.

 -d <level> | ?

This option sets the slapd debug level to <level>. When level is a `?' character, the various debugging levels
are printed and slapd exits, regardless of any other options you give it. Current debugging levels are

Table 7.1: Debugging Levels

Level Keyword Description
-1 any enable all debugging
0 no debugging
1 (0x1 trace) trace function calls
2 (0x2 packets) debug packet handling
4 (0x4 args) heavy trace debugging
8 (0x8 conns) connection management

16 (0x10 BER) print out packets sent and received
32 (0x20 filter) search filter processing
64 (0x40 config) configuration processing

128 (0x80 ACL) access control list processing
256 (0x100 stats) stats log connections/operations/results
512 (0x200 stats2) stats log entries sent

1024 (0x400 shell) print communication with shell backends

OpenLDAP Software 2.5 Administrator's Guide

56

https://tools.ietf.org/html/draft-chu-ldap-ldapi-00

2048 (0x800 parse) print entry parsing debugging
16384 (0x4000 sync) syncrepl consumer processing
32768 (0x8000 none) only messages that get logged whatever log level is set

You may enable multiple levels by specifying the debug option once for each desired level. Or, since
debugging levels are additive, you can do the math yourself. That is, if you want to trace function calls and
watch the config file being processed, you could set level to the sum of those two levels (in this case, -d 65).
Or, you can let slapd do the math, (e.g. -d 1 -d 64). Consult <ldap_log.h> for more details.

Note: slapd must have been compiled with --enable-debug, which is the default, for any debugging
information other than the stats and stats2 levels to be available as options.

7.2. Starting slapd

In general, slapd is run like this:

 /usr/local/libexec/slapd [<option>]*

where /usr/local/libexec is determined by configure and <option> is one of the options described above
(or in slapd(8)). Unless you have specified a debugging level (including level 0), slapd will automatically fork
and detach itself from its controlling terminal and run in the background.

7.3. Stopping slapd

To kill off slapd(8) safely, you should give a command like this

 kill -INT `cat /usr/local/var/slapd.pid`

where /usr/local/var is determined by configure.

Killing slapd by a more drastic method may cause information loss or database corruption.

OpenLDAP Software 2.5 Administrator's Guide

57

OpenLDAP Software 2.5 Administrator's Guide

58

8. Access Control

8.1. Introduction

As the directory gets populated with more and more data of varying sensitivity, controlling the kinds of access
granted to the directory becomes more and more critical. For instance, the directory may contain data of a
confidential nature that you may need to protect by contract or by law. Or, if using the directory to control
access to other services, inappropriate access to the directory may create avenues of attack to your sites
security that result in devastating damage to your assets.

Access to your directory can be configured via two methods, the first using The slapd Configuration File and
the second using the slapd-config(5) format (Configuring slapd).

The default access control policy is allow read by all clients. Regardless of what access control policy is
defined, the rootdn is always allowed full rights (i.e. auth, search, compare, read and write) on everything and
anything.

As a consequence, it's useless (and results in a performance penalty) to explicitly list the rootdn among the
<by> clauses.

The following sections will describe Access Control Lists in greater depth and follow with some examples
and recommendations. See slapd.access(5) for complete details.

8.2. Access Control via Static Configuration

Access to entries and attributes is controlled by the access configuration file directive. The general form of an
access line is:

 <access directive> ::= access to <what>
 [by <who> [<access>] [<control>]]+
 <what> ::= * |
 [dn[.<basic-style>]=<regex> | dn.<scope-style>=<DN>]
 [filter=<ldapfilter>] [attrs=<attrlist>]
 <basic-style> ::= regex | exact
 <scope-style> ::= base | one | subtree | children
 <attrlist> ::= <attr> [val[.<basic-style>]=<regex>] | <attr> , <attrlist>
 <attr> ::= <attrname> | entry | children
 <who> ::= * | [anonymous | users | self
 | dn[.<basic-style>]=<regex> | dn.<scope-style>=<DN>]
 [dnattr=<attrname>]
 [group[/<objectclass>[/<attrname>][.<basic-style>]]=<regex>]
 [peername[.<basic-style>]=<regex>]
 [sockname[.<basic-style>]=<regex>]
 [domain[.<basic-style>]=<regex>]
 [sockurl[.<basic-style>]=<regex>]
 [set=<setspec>]
 [aci=<attrname>]
 <access> ::= [self]{<level>|<priv>}
 <level> ::= none | disclose | auth | compare | search | read | write | manage
 <priv> ::= {=|+|-}{m|w|r|s|c|x|d|0}+
 <control> ::= [stop | continue | break]

59

where the <what> part selects the entries and/or attributes to which the access applies, the <who> part specifies
which entities are granted access, and the <access> part specifies the access granted. Multiple <who>
<access> <control> triplets are supported, allowing many entities to be granted different access to the same
set of entries and attributes. Not all of these access control options are described here; for more details see the
slapd.access(5) man page.

8.2.1. What to control access to

The <what> part of an access specification determines the entries and attributes to which the access control
applies. Entries are commonly selected in two ways: by DN and by filter. The following qualifiers select
entries by DN:

 to *
 to dn[.<basic-style>]=<regex>
 to dn.<scope-style>=<DN>

The first form is used to select all entries. The second form may be used to select entries by matching a
regular expression against the target entry's normalized DN. (The second form is not discussed further in this
document.) The third form is used to select entries which are within the requested scope of DN. The <DN> is
a string representation of the Distinguished Name, as described in RFC4514.

The scope can be either base, one, subtree, or children. Where base matches only the entry with provided
DN, one matches the entries whose parent is the provided DN, subtree matches all entries in the subtree
whose root is the provided DN, and children matches all entries under the DN (but not the entry named by
the DN).

For example, if the directory contained entries named:

 0: o=suffix
 1: cn=Manager,o=suffix
 2: ou=people,o=suffix
 3: uid=kdz,ou=people,o=suffix
 4: cn=addresses,uid=kdz,ou=people,o=suffix
 5: uid=hyc,ou=people,o=suffix

Then:

dn.base="ou=people,o=suffix" match 2;
dn.one="ou=people,o=suffix" match 3, and 5;
dn.subtree="ou=people,o=suffix" match 2, 3, 4, and 5; and
dn.children="ou=people,o=suffix" match 3, 4, and 5.

Entries may also be selected using a filter:

 to filter=<ldap filter>

where <ldap filter> is a string representation of an LDAP search filter, as described in RFC4515. For
example:

 to filter=(objectClass=person)

Note that entries may be selected by both DN and filter by including both qualifiers in the <what> clause.

OpenLDAP Software 2.5 Administrator's Guide

60

https://www.rfc-editor.org/rfc/rfc4514.txt
https://www.rfc-editor.org/rfc/rfc4515.txt

 to dn.one="ou=people,o=suffix" filter=(objectClass=person)

Attributes within an entry are selected by including a comma-separated list of attribute names in the <what>
selector:

 attrs=<attribute list>

A specific value of an attribute is selected by using a single attribute name and also using a value selector:

 attrs=<attribute> val[.<style>]=<regex>

There are two special pseudo attributes entry and children. To read (and hence return) a target entry, the
subject must have read access to the target's entry attribute. To perform a search, the subject must have
search access to the search base's entry attribute. To add or delete an entry, the subject must have write
access to the entry's entry attribute AND must have write access to the entry's parent's children attribute.
To rename an entry, the subject must have write access to entry's entry attribute AND have write access to
both the old parent's and new parent's children attributes. The complete examples at the end of this section
should help clear things up.

Lastly, there is a special entry selector "*" that is used to select any entry. It is used when no other <what>
selector has been provided. It's equivalent to "dn=.*"

8.2.2. Who to grant access to

The <who> part identifies the entity or entities being granted access. Note that access is granted to "entities"
not "entries." The following table summarizes entity specifiers:

Table 6.3: Access Entity Specifiers

Specifier Entities
* All, including anonymous and authenticated users
anonymous Anonymous (non-authenticated) users
users Authenticated users
self User associated with target entry
dn[.<basic-style>]=<regex> Users matching a regular expression
dn.<scope-style>=<DN> Users within scope of a DN

The DN specifier behaves much like <what> clause DN specifiers.

Other control factors are also supported. For example, a <who> can be restricted by an entry listed in a
DN-valued attribute in the entry to which the access applies:

 dnattr=<dn-valued attribute name>

The dnattr specification is used to give access to an entry whose DN is listed in an attribute of the entry (e.g.,
give access to a group entry to whoever is listed as the owner of the group entry).

Some factors may not be appropriate in all environments (or any). For example, the domain factor relies on IP
to domain name lookups. As these can easily be spoofed, the domain factor should be avoided.

OpenLDAP Software 2.5 Administrator's Guide

61

8.2.3. The access to grant

The kind of <access> granted can be one of the following:

Table 6.4: Access Levels

Level Privileges Description
none = 0 no access
disclose = d needed for information disclosure on error
auth = dx needed to authenticate (bind)
compare = cdx needed to compare
search = scdx needed to apply search filters
read = rscdx needed to read search results
write = wrscdx needed to modify/rename
manage = mwrscdx needed to manage

Each level implies all lower levels of access. So, for example, granting someone write access to an entry also
grants them read, search, compare, auth and disclose access. However, one may use the privileges
specifier to grant specific permissions.

8.2.4. Access Control Evaluation

When evaluating whether some requester should be given access to an entry and/or attribute, slapd compares
the entry and/or attribute to the <what> selectors given in the configuration file. For each entry, access
controls provided in the database which holds the entry (or the global access directives if not held in any
database) apply first, followed by the global access directives. However, when dealing with an access list,
because the global access list is effectively appended to each per-database list, if the resulting list is
non-empty then the access list will end with an implicit access to * by * none directive. If there are no
access directives applicable to a backend, then a default read is used.

Within this priority, access directives are examined in the order in which they appear in the config file. Slapd
stops with the first <what> selector that matches the entry and/or attribute. The corresponding access directive
is the one slapd will use to evaluate access.

Next, slapd compares the entity requesting access to the <who> selectors within the access directive selected
above in the order in which they appear. It stops with the first <who> selector that matches the requester. This
determines the access the entity requesting access has to the entry and/or attribute.

Finally, slapd compares the access granted in the selected <access> clause to the access requested by the
client. If it allows greater or equal access, access is granted. Otherwise, access is denied.

The order of evaluation of access directives makes their placement in the configuration file important. If one
access directive is more specific than another in terms of the entries it selects, it should appear first in the
config file. Similarly, if one <who> selector is more specific than another it should come first in the access
directive. The access control examples given below should help make this clear.

OpenLDAP Software 2.5 Administrator's Guide

62

8.2.5. Access Control Examples

The access control facility described above is quite powerful. This section shows some examples of its use for
descriptive purposes.

A simple example:

 access to * by * read

This access directive grants read access to everyone.

 access to *
 by self write
 by anonymous auth
 by * read

This directive allows the user to modify their entry, allows anonymous to authenticate against these entries,
and allows all others to read these entries. Note that only the first by <who> clause which matches applies.
Hence, the anonymous users are granted auth, not read. The last clause could just as well have been "by
users read".

It is often desirable to restrict operations based upon the level of protection in place. The following shows
how security strength factors (SSF) can be used.

 access to *
 by ssf=128 self write
 by ssf=64 anonymous auth
 by ssf=64 users read

This directive allows users to modify their own entries if security protections have of strength 128 or better
have been established, allows authentication access to anonymous users, and read access when 64 or better
security protections have been established. If client has not establish sufficient security protections, the
implicit by * none clause would be applied.

The following example shows the use of a style specifiers to select the entries by DN in two access directives
where ordering is significant.

 access to dn.children="dc=example,dc=com"
 by * search
 access to dn.children="dc=com"
 by * read

Read access is granted to entries under the dc=com subtree, except for those entries under the
dc=example,dc=com subtree, to which search access is granted. No access is granted to dc=com as neither
access directive matches this DN. If the order of these access directives was reversed, the trailing directive
would never be reached, since all entries under dc=example,dc=com are also under dc=com entries.

Also note that if no access to directive matches or no by <who> clause, access is denied. That is, every
access to directive ends with an implicit by * none clause. When dealing with an access list, because the
global access list is effectively appended to each per-database list, if the resulting list is non-empty then the
access list will end with an implicit access to * by * none directive. If there are no access directives
applicable to a backend, then a default read is used.

OpenLDAP Software 2.5 Administrator's Guide

63

The next example again shows the importance of ordering, both of the access directives and the by <who>
clauses. It also shows the use of an attribute selector to grant access to a specific attribute and various <who>
selectors.

 access to dn.subtree="dc=example,dc=com" attrs=homePhone
 by self write
 by dn.children="dc=example,dc=com" search
 by peername.regex=IP=10\..+ read
 access to dn.subtree="dc=example,dc=com"
 by self write
 by dn.children="dc=example,dc=com" search
 by anonymous auth

This example applies to entries in the "dc=example,dc=com" subtree. To all attributes except homePhone, an
entry can write to itself, entries under example.com entries can search by them, anybody else has no access
(implicit by * none) excepting for authentication/authorization (which is always done anonymously). The
homePhone attribute is writable by the entry, searchable by entries under example.com, readable by clients
connecting from network 10, and otherwise not readable (implicit by * none). All other access is denied by
the implicit access to * by * none.

Sometimes it is useful to permit a particular DN to add or remove itself from an attribute. For example, if you
would like to create a group and allow people to add and remove only their own DN from the member
attribute, you could accomplish it with an access directive like this:

 access to attrs=member,entry
 by dnattr=member selfwrite

The dnattr <who> selector says that the access applies to entries listed in the member attribute. The selfwrite
access selector says that such members can only add or delete their own DN from the attribute, not other
values. The addition of the entry attribute is required because access to the entry is required to access any of
the entry's attributes.

8.3. Access Control via Dynamic Configuration

Access to slapd entries and attributes is controlled by the olcAccess attribute, whose values are a sequence of
access directives. The general form of the olcAccess configuration is:

 olcAccess: <access directive>
 <access directive> ::= to <what>
 [by <who> [<access>] [<control>]]+
 <what> ::= * |
 [dn[.<basic-style>]=<regex> | dn.<scope-style>=<DN>]
 [filter=<ldapfilter>] [attrs=<attrlist>]
 <basic-style> ::= regex | exact
 <scope-style> ::= base | one | subtree | children
 <attrlist> ::= <attr> [val[.<basic-style>]=<regex>] | <attr> , <attrlist>
 <attr> ::= <attrname> | entry | children
 <who> ::= * | [anonymous | users | self
 | dn[.<basic-style>]=<regex> | dn.<scope-style>=<DN>]
 [dnattr=<attrname>]
 [group[/<objectclass>[/<attrname>][.<basic-style>]]=<regex>]
 [peername[.<basic-style>]=<regex>]
 [sockname[.<basic-style>]=<regex>]
 [domain[.<basic-style>]=<regex>]
 [sockurl[.<basic-style>]=<regex>]

OpenLDAP Software 2.5 Administrator's Guide

64

 [set=<setspec>]
 [aci=<attrname>]
 <access> ::= [self]{<level>|<priv>}
 <level> ::= none | disclose | auth | compare | search | read | write | manage
 <priv> ::= {=|+|-}{m|w|r|s|c|x|d|0}+
 <control> ::= [stop | continue | break]

where the <what> part selects the entries and/or attributes to which the access applies, the <who> part specifies
which entities are granted access, and the <access> part specifies the access granted. Multiple <who>
<access> <control> triplets are supported, allowing many entities to be granted different access to the same
set of entries and attributes. Not all of these access control options are described here; for more details see the
slapd.access(5) man page.

8.3.1. What to control access to

The <what> part of an access specification determines the entries and attributes to which the access control
applies. Entries are commonly selected in two ways: by DN and by filter. The following qualifiers select
entries by DN:

 to *
 to dn[.<basic-style>]=<regex>
 to dn.<scope-style>=<DN>

The first form is used to select all entries. The second form may be used to select entries by matching a
regular expression against the target entry's normalized DN. (The second form is not discussed further in this
document.) The third form is used to select entries which are within the requested scope of DN. The <DN> is
a string representation of the Distinguished Name, as described in RFC4514.

The scope can be either base, one, subtree, or children. Where base matches only the entry with provided
DN, one matches the entries whose parent is the provided DN, subtree matches all entries in the subtree
whose root is the provided DN, and children matches all entries under the DN (but not the entry named by
the DN).

For example, if the directory contained entries named:

 0: o=suffix
 1: cn=Manager,o=suffix
 2: ou=people,o=suffix
 3: uid=kdz,ou=people,o=suffix
 4: cn=addresses,uid=kdz,ou=people,o=suffix
 5: uid=hyc,ou=people,o=suffix

Then:

dn.base="ou=people,o=suffix" match 2;
dn.one="ou=people,o=suffix" match 3, and 5;
dn.subtree="ou=people,o=suffix" match 2, 3, 4, and 5; and
dn.children="ou=people,o=suffix" match 3, 4, and 5.

Entries may also be selected using a filter:

 to filter=<ldap filter>

OpenLDAP Software 2.5 Administrator's Guide

65

https://www.rfc-editor.org/rfc/rfc4514.txt

where <ldap filter> is a string representation of an LDAP search filter, as described in RFC4515. For
example:

 to filter=(objectClass=person)

Note that entries may be selected by both DN and filter by including both qualifiers in the <what> clause.

 to dn.one="ou=people,o=suffix" filter=(objectClass=person)

Attributes within an entry are selected by including a comma-separated list of attribute names in the <what>
selector:

 attrs=<attribute list>

A specific value of an attribute is selected by using a single attribute name and also using a value selector:

 attrs=<attribute> val[.<style>]=<regex>

There are two special pseudo attributes entry and children. To read (and hence return) a target entry, the
subject must have read access to the target's entry attribute. To perform a search, the subject must have
search access to the search base's entry attribute. To add or delete an entry, the subject must have write
access to the entry's entry attribute AND must have write access to the entry's parent's children attribute.
To rename an entry, the subject must have write access to entry's entry attribute AND have write access to
both the old parent's and new parent's children attributes. The complete examples at the end of this section
should help clear things up.

Lastly, there is a special entry selector "*" that is used to select any entry. It is used when no other <what>
selector has been provided. It's equivalent to "dn=.*"

8.3.2. Who to grant access to

The <who> part identifies the entity or entities being granted access. Note that access is granted to "entities"
not "entries." The following table summarizes entity specifiers:

Table 5.3: Access Entity Specifiers

Specifier Entities
* All, including anonymous and authenticated users
anonymous Anonymous (non-authenticated) users
users Authenticated users
self User associated with target entry
dn[.<basic-style>]=<regex> Users matching a regular expression
dn.<scope-style>=<DN> Users within scope of a DN

The DN specifier behaves much like <what> clause DN specifiers.

Other control factors are also supported. For example, a <who> can be restricted by an entry listed in a
DN-valued attribute in the entry to which the access applies:

 dnattr=<dn-valued attribute name>

OpenLDAP Software 2.5 Administrator's Guide

66

https://www.rfc-editor.org/rfc/rfc4515.txt

The dnattr specification is used to give access to an entry whose DN is listed in an attribute of the entry (e.g.,
give access to a group entry to whoever is listed as the owner of the group entry).

Some factors may not be appropriate in all environments (or any). For example, the domain factor relies on IP
to domain name lookups. As these can easily be spoofed, the domain factor should be avoided.

8.3.3. The access to grant

The kind of <access> granted can be one of the following:

Table 5.4: Access Levels

Level Privileges Description
none =0 no access
disclose =d needed for information disclosure on error
auth =dx needed to authenticate (bind)
compare =cdx needed to compare
search =scdx needed to apply search filters
read =rscdx needed to read search results
write =wrscdx needed to modify/rename
manage =mwrscdx needed to manage

Each level implies all lower levels of access. So, for example, granting someone write access to an entry also
grants them read, search, compare, auth and disclose access. However, one may use the privileges
specifier to grant specific permissions.

8.3.4. Access Control Evaluation

When evaluating whether some requester should be given access to an entry and/or attribute, slapd compares
the entry and/or attribute to the <what> selectors given in the configuration. For each entry, access controls
provided in the database which holds the entry (or the global access directives if not held in any database)
apply first, followed by the global access directives (which are held in the frontend database definition).
However, when dealing with an access list, because the global access list is effectively appended to each
per-database list, if the resulting list is non-empty then the access list will end with an implicit access to *
by * none directive. If there are no access directives applicable to a backend, then a default read is used.

Within this priority, access directives are examined in the order in which they appear in the configuration
attribute. Slapd stops with the first <what> selector that matches the entry and/or attribute. The corresponding
access directive is the one slapd will use to evaluate access.

Next, slapd compares the entity requesting access to the <who> selectors within the access directive selected
above in the order in which they appear. It stops with the first <who> selector that matches the requester. This
determines the access the entity requesting access has to the entry and/or attribute.

Finally, slapd compares the access granted in the selected <access> clause to the access requested by the
client. If it allows greater or equal access, access is granted. Otherwise, access is denied.

The order of evaluation of access directives makes their placement in the configuration file important. If one
access directive is more specific than another in terms of the entries it selects, it should appear first in the

OpenLDAP Software 2.5 Administrator's Guide

67

configuration. Similarly, if one <who> selector is more specific than another it should come first in the access
directive. The access control examples given below should help make this clear.

8.3.5. Access Control Examples

The access control facility described above is quite powerful. This section shows some examples of its use for
descriptive purposes.

A simple example:

 olcAccess: to * by * read

This access directive grants read access to everyone.

 olcAccess: to *
 by self write
 by anonymous auth
 by * read

This directive allows the user to modify their entry, allows anonymous to authenticate against these entries,
and allows all others to read these entries. Note that only the first by <who> clause which matches applies.
Hence, the anonymous users are granted auth, not read. The last clause could just as well have been "by
users read".

It is often desirable to restrict operations based upon the level of protection in place. The following shows
how security strength factors (SSF) can be used.

 olcAccess: to *
 by ssf=128 self write
 by ssf=64 anonymous auth
 by ssf=64 users read

This directive allows users to modify their own entries if security protections of strength 128 or better have
been established, allows authentication access to anonymous users, and read access when strength 64 or better
security protections have been established. If the client has not establish sufficient security protections, the
implicit by * none clause would be applied.

The following example shows the use of style specifiers to select the entries by DN in two access directives
where ordering is significant.

 olcAccess: to dn.children="dc=example,dc=com"
 by * search
 olcAccess: to dn.children="dc=com"
 by * read

Read access is granted to entries under the dc=com subtree, except for those entries under the
dc=example,dc=com subtree, to which search access is granted. No access is granted to dc=com as neither
access directive matches this DN. If the order of these access directives was reversed, the trailing directive
would never be reached, since all entries under dc=example,dc=com are also under dc=com entries.

Also note that if no olcAccess: to directive matches or no by <who> clause, access is denied. When
dealing with an access list, because the global access list is effectively appended to each per-database list, if
the resulting list is non-empty then the access list will end with an implicit access to * by * none

OpenLDAP Software 2.5 Administrator's Guide

68

directive. If there are no access directives applicable to a backend, then a default read is used.

The next example again shows the importance of ordering, both of the access directives and the by <who>
clauses. It also shows the use of an attribute selector to grant access to a specific attribute and various <who>
selectors.

 olcAccess: to dn.subtree="dc=example,dc=com" attrs=homePhone
 by self write
 by dn.children=dc=example,dc=com" search
 by peername.regex=IP=10\..+ read
 olcAccess: to dn.subtree="dc=example,dc=com"
 by self write
 by dn.children="dc=example,dc=com" search
 by anonymous auth

This example applies to entries in the "dc=example,dc=com" subtree. To all attributes except homePhone, an
entry can write to itself, entries under example.com entries can search by them, anybody else has no access
(implicit by * none) excepting for authentication/authorization (which is always done anonymously). The
homePhone attribute is writable by the entry, searchable by entries under example.com, readable by clients
connecting from network 10, and otherwise not readable (implicit by * none). All other access is denied by
the implicit access to * by * none.

Sometimes it is useful to permit a particular DN to add or remove itself from an attribute. For example, if you
would like to create a group and allow people to add and remove only their own DN from the member
attribute, you could accomplish it with an access directive like this:

 olcAccess: to attrs=member,entry
 by dnattr=member selfwrite

The dnattr <who> selector says that the access applies to entries listed in the member attribute. The selfwrite
access selector says that such members can only add or delete their own DN from the attribute, not other
values. The addition of the entry attribute is required because access to the entry is required to access any of
the entry's attributes.

8.3.6. Access Control Ordering

Since the ordering of olcAccess directives is essential to their proper evaluation, but LDAP attributes
normally do not preserve the ordering of their values, OpenLDAP uses a custom schema extension to
maintain a fixed ordering of these values. This ordering is maintained by prepending a "{X}" numeric index
to each value, similarly to the approach used for ordering the configuration entries. These index tags are
maintained automatically by slapd and do not need to be specified when originally defining the values. For
example, when you create the settings

 olcAccess: to attrs=member,entry
 by dnattr=member selfwrite
 olcAccess: to dn.children="dc=example,dc=com"
 by * search
 olcAccess: to dn.children="dc=com"
 by * read

when you read them back using slapcat or ldapsearch they will contain

 olcAccess: {0}to attrs=member,entry
 by dnattr=member selfwrite

OpenLDAP Software 2.5 Administrator's Guide

69

 olcAccess: {1}to dn.children="dc=example,dc=com"
 by * search
 olcAccess: {2}to dn.children="dc=com"
 by * read

The numeric index may be used to specify a particular value to change when using ldapmodify to edit the
access rules. This index can be used instead of (or in addition to) the actual access value. Using this numeric
index is very helpful when multiple access rules are being managed.

For example, if we needed to change the second rule above to grant write access instead of search, we could
try this LDIF:

 changetype: modify
 delete: olcAccess
 olcAccess: to dn.children="dc=example,dc=com" by * search
 -
 add: olcAccess
 olcAccess: to dn.children="dc=example,dc=com" by * write
 -

But this example will not guarantee that the existing values remain in their original order, so it will most
likely yield a broken security configuration. Instead, the numeric index should be used:

 changetype: modify
 delete: olcAccess
 olcAccess: {1}
 -
 add: olcAccess
 olcAccess: {1}to dn.children="dc=example,dc=com" by * write
 -

This example deletes whatever rule is in value #1 of the olcAccess attribute (regardless of its value) and adds
a new value that is explicitly inserted as value #1. The result will be

 olcAccess: {0}to attrs=member,entry
 by dnattr=member selfwrite
 olcAccess: {1}to dn.children="dc=example,dc=com"
 by * write
 olcAccess: {2}to dn.children="dc=com"
 by * read

which is exactly what was intended.

8.4. Access Control Common Examples

8.4.1. Basic ACLs

Generally one should start with some basic ACLs such as:

 access to attrs=userPassword
 by self =xw
 by anonymous auth
 by * none

OpenLDAP Software 2.5 Administrator's Guide

70

 access to *
 by self write
 by users read
 by * none

The first ACL allows users to update (but not read) their passwords, anonymous users to authenticate against
this attribute, and (implicitly) denying all access to others.

The second ACL allows users full access to their entry, authenticated users read access to anything, and
(implicitly) denying all access to others (in this case, anonymous users).

8.4.2. Matching Anonymous and Authenticated users

An anonymous user has a empty DN. While the dn.exact="" or dn.regex="^$" could be used, slapd(8)) offers
an anonymous shorthand which should be used instead.

 access to *
 by anonymous none
 by * read

denies all access to anonymous users while granting others read.

Authenticated users have a subject DN. While dn.regex=".+" will match any authenticated user, OpenLDAP
provides the users short hand which should be used instead.

 access to *
 by users read
 by * none

This ACL grants read permissions to authenticated users while denying others (i.e.: anonymous users).

8.4.3. Controlling rootdn access

You could specify the rootdn in slapd.conf(5) or slapd.d without specifying a rootpw. Then you have to add
an actual directory entry with the same dn, e.g.:

 dn: cn=Manager,o=MyOrganization
 cn: Manager
 sn: Manager
 objectClass: person
 objectClass: top
 userPassword: {SSHA}someSSHAdata

Then binding as the rootdn will require a regular bind to that DN, which in turn requires auth access to that
entry's DN and userPassword, and this can be restricted via ACLs. E.g.:

 access to dn.base="cn=Manager,o=MyOrganization"
 by peername.regex=127\.0\.0\.1 auth
 by peername.regex=192\.168\.0\..* auth
 by users none
 by * none

The ACLs above will only allow binding using rootdn from localhost and 192.168.0.0/24.

OpenLDAP Software 2.5 Administrator's Guide

71

8.4.4. Managing access with Groups

There are a few ways to do this. One approach is illustrated here. Consider the following DIT layout:

 +-dc=example,dc=com
 +---cn=administrators,dc=example,dc=com
 +---cn=fred blogs,dc=example,dc=com

and the following group object (in LDIF format):

 dn: cn=administrators,dc=example,dc=com
 cn: administrators of this region
 objectclass: groupOfNames (important for the group acl feature)
 member: cn=fred blogs,dc=example,dc=com
 member: cn=somebody else,dc=example,dc=com

One can then grant access to the members of this this group by adding appropriate by group clause to an
access directive in slapd.conf(5). For instance,

 access to dn.children="dc=example,dc=com"
 by self write
 by group.exact="cn=Administrators,dc=example,dc=com" write
 by * auth

Like by dn clauses, one can also use expand to expand the group name based upon the regular expression
matching of the target, that is, the to dn.regex). For instance,

 access to dn.regex="(.+,)?ou=People,(dc=[^,]+,dc=[^,]+)$"
 attrs=children,entry,uid
 by group.expand="cn=Managers,$2" write
 by users read
 by * auth

The above illustration assumed that the group members are to be found in the member attribute type of the
groupOfNames object class. If you need to use a different group object and/or a different attribute type then
use the following slapd.conf(5) (abbreviated) syntax:

 access to <what>
 by group/<objectclass>/<attributename>=<DN> <access>

For example:

 access to *
 by group/organizationalRole/roleOccupant="cn=Administrator,dc=example,dc=com" write

In this case, we have an ObjectClass organizationalRole which contains the administrator DN's in the
roleOccupant attribute. For instance:

 dn: cn=Administrator,dc=example,dc=com
 cn: Administrator
 objectclass: organizationalRole
 roleOccupant: cn=Jane Doe,dc=example,dc=com

Note: the specified member attribute type MUST be of DN or NameAndOptionalUID syntax, and the
specified object class SHOULD allow the attribute type.

OpenLDAP Software 2.5 Administrator's Guide

72

Dynamic Groups are also supported in Access Control. Please see slapo-dynlist(5) and the Dynamic Lists
overlay section.

8.4.5. Granting access to a subset of attributes

You can grant access to a set of attributes by specifying a list of attribute names in the ACL to clause. To be
useful, you also need to grant access to the entry itself. Also note how children controls the ability to add,
delete, and rename entries.

 # mail: self may write, authenticated users may read
 access to attrs=mail
 by self write
 by users read
 by * none

 # cn, sn: self my write, all may read
 access to attrs=cn,sn
 by self write
 by * read

 # immediate children: only self can add/delete entries under this entry
 access to attrs=children
 by self write

 # entry itself: self may write, all may read
 access to attrs=entry
 by self write
 by * read

 # other attributes: self may write, others have no access
 access to *
 by self write
 by * none

ObjectClass names may also be specified in this list, which will affect all the attributes that are required
and/or allowed by that objectClass. Actually, names in attrlist that are prefixed by @ are directly treated as
objectClass names. A name prefixed by ! is also treated as an objectClass, but in this case the access rule
affects the attributes that are not required nor allowed by that objectClass.

8.4.6. Allowing a user write to all entries below theirs

For a setup where a user can write to its own record and to all of its children:

 access to dn.regex="(.+,)?(uid=[^,]+,o=Company)$"
 by dn.exact,expand="$2" write
 by anonymous auth

(Add more examples for above)

8.4.7. Allowing entry creation

Let's say, you have it like this:

 o=<basedn>

OpenLDAP Software 2.5 Administrator's Guide

73

 ou=domains
 associatedDomain=<somedomain>
 ou=users
 uid=<someuserid>
 uid=<someotheruserid>
 ou=addressbooks
 uid=<someuserid>
 cn=<someone>
 cn=<someoneelse>

and, for another domain <someotherdomain>:

 o=<basedn>
 ou=domains
 associatedDomain=<someotherdomain>
 ou=users
 uid=<someuserid>
 uid=<someotheruserid>
 ou=addressbooks
 uid=<someotheruserid>
 cn=<someone>
 cn=<someoneelse>

then, if you wanted user uid=<someuserid> to ONLY create an entry for its own thing, you could write an
ACL like this:

 # this rule lets users of "associatedDomain=<matcheddomain>"
 # write under "ou=addressbook,associatedDomain=<matcheddomain>,ou=domains,o=<basedn>",
 # i.e. a user can write ANY entry below its domain's address book;
 # this permission is necessary, but not sufficient, the next
 # will restrict this permission further

 access to dn.regex="^ou=addressbook,associatedDomain=([^,]+),ou=domains,o=<basedn>$" attrs=children
 by dn.regex="^uid=([^,]+),ou=users,associatedDomain=$1,ou=domains,o=<basedn>$$" write
 by * none

 # Note that above the "by" clause needs a "regex" style to make sure
 # it expands to a DN that starts with a "uid=<someuserid>" pattern
 # while substituting the associatedDomain submatch from the "what" clause.

 # This rule lets a user with "uid=<matcheduid>" of "<associatedDomain=matcheddomain>"
 # write (i.e. add, modify, delete) the entry whose DN is exactly
 # "uid=<matcheduid>,ou=addressbook,associatedDomain=<matcheddomain>,ou=domains,o=<basedn>"
 # and ANY entry as subtree of it

 access to dn.regex="^(.+,)?uid=([^,]+),ou=addressbook,associatedDomain=([^,]+),ou=domains,o=<basedn>$"
 by dn.exact,expand="uid=$2,ou=users,associatedDomain=$3,ou=domains,o=<basedn>" write
 by * none

 # Note that above the "by" clause uses the "exact" style with the "expand"
 # modifier because now the whole pattern can be rebuilt by means of the
 # submatches from the "what" clause, so a "regex" compilation and evaluation
 # is no longer required.

OpenLDAP Software 2.5 Administrator's Guide

74

8.4.8. Tips for using regular expressions in Access Control

Always use dn.regex=<pattern> when you intend to use regular expression matching. dn=<pattern> alone
defaults to dn.exact<pattern>.

Use (.+) instead of (.*) when you want at least one char to be matched. (.*) matches the empty string as well.

Don't use regular expressions for matches that can be done otherwise in a safer and cheaper manner.
Examples:

 dn.regex=".*dc=example,dc=com"

is unsafe and expensive:

unsafe because any string containing dc=example,dc=com will match, not only those that end with
the desired pattern; use .*dc=example,dc=com$ instead.

•

unsafe also because it would allow any attributeType ending with dc as naming attribute for the first
RDN in the string, e.g. a custom attributeType mydc would match as well. If you really need a regular
expression that allows just dc=example,dc=com or any of its subtrees, use
^(.+,)?dc=example,dc=com$, which means: anything to the left of dc=..., if any (the question mark
after the pattern within brackets), must end with a comma;

•

expensive because if you don't need submatches, you could use scoping styles, e.g.•

 dn.subtree="dc=example,dc=com"

to include dc=example,dc=com in the matching patterns,

 dn.children="dc=example,dc=com"

to exclude dc=example,dc=com from the matching patterns, or

 dn.onelevel="dc=example,dc=com"

to allow exactly one sublevel matches only.

Always use ^ and $ in regexes, whenever appropriate, because ou=(.+),ou=(.+),ou=addressbooks,o=basedn
will match
something=bla,ou=xxx,ou=yyy,ou=addressbooks,o=basedn,ou=addressbooks,o=basedn,dc=some,dc=org

Always use ([^,]+) to indicate exactly one RDN, because (.+) can include any number of RDNs; e.g.
ou=(.+),dc=example,dc=com will match ou=My,o=Org,dc=example,dc=com, which might not be what you
want.

Never add the rootdn to the by clauses. ACLs are not even processed for operations performed with rootdn
identity (otherwise there would be no reason to define a rootdn at all).

Use shorthands. The user directive matches authenticated users and the anonymous directive matches
anonymous users.

Don't use the dn.regex form for <by> clauses if all you need is scoping and/or substring replacement; use
scoping styles (e.g. exact, onelevel, children or subtree) and the style modifier expand to cause substring

OpenLDAP Software 2.5 Administrator's Guide

75

expansion.

For instance,

 access to dn.regex=".+,dc=([^,]+),dc=([^,]+)$"
 by dn.regex="^[^,],ou=Admin,dc=$1,dc=$2$$" write

although correct, can be safely and efficiently replaced by

 access to dn.regex=".+,(dc=[^,]+,dc=[^,]+)$"
 by dn.onelevel,expand="ou=Admin,$1" write

where the regex in the <what> clause is more compact, and the one in the <by> clause is replaced by a much
more efficient scoping style of onelevel with substring expansion.

8.4.9. Granting and Denying access based on security strength factors (ssf)

You can restrict access based on the security strength factor (SSF)

 access to dn="cn=example,cn=edu"
 by * ssf=256 read

0 (zero) implies no protection, 1 implies integrity protection only, 56 DES or other weak ciphers, 112 triple
DES and similar ciphers, 128 RC4, Blowfish and other similar ciphers, 256 modern ciphers.

Other possibilities:

 transport_ssf=<n>
 tls_ssf=<n>
 sasl_ssf=<n>

256 is recommended.

See slapd.conf(5) for information on ssf.

8.4.10. When things aren't working as expected

Consider this example:

 access to *
 by anonymous auth

 access to *
 by self write

 access to *
 by users read

You may think this will allow any user to login, to read everything and change his own data if he is logged in.
But in this example only the login works and an ldapsearch returns no data. The Problem is that SLAPD goes
through its access config line by line and stops as soon as it finds a match in the part of the access rule.(here:
to *)

OpenLDAP Software 2.5 Administrator's Guide

76

To get what we wanted the file has to read:

 access to *
 by anonymous auth
 by self write
 by users read

The general rule is: "special access rules first, generic access rules last"

See also slapd.access(5), loglevel 128 and slapacl(8) for debugging information.

8.5. Sets - Granting rights based on relationships

Sets are best illustrated via examples. The following sections will present a few set ACL examples in order to
facilitate their understanding.

(Sets in Access Controls FAQ Entry: http://www.openldap.org/faq/data/cache/1133.html)

Note: Sets are considered experimental.

8.5.1. Groups of Groups

The OpenLDAP ACL for groups doesn't expand groups within groups, which are groups that have another
group as a member. For example:

 dn: cn=sudoadm,ou=group,dc=example,dc=com
 cn: sudoadm
 objectClass: groupOfNames
 member: uid=john,ou=people,dc=example,dc=com
 member: cn=accountadm,ou=group,dc=example,dc=com

 dn: cn=accountadm,ou=group,dc=example,dc=com
 cn: accountadm
 objectClass: groupOfNames
 member: uid=mary,ou=people,dc=example,dc=com

If we use standard group ACLs with the above entries and allow members of the sudoadm group to write
somewhere, mary won't be included:

 access to dn.subtree="ou=sudoers,dc=example,dc=com"
 by group.exact="cn=sudoadm,ou=group,dc=example,dc=com" write
 by * read

With sets we can make the ACL be recursive and consider group within groups. So for each member that is a
group, it is further expanded:

 access to dn.subtree="ou=sudoers,dc=example,dc=com"
 by set="[cn=sudoadm,ou=group,dc=example,dc=com]/member* & user" write
 by * read

This set ACL means: take the cn=sudoadm DN, check its member attribute(s) (where the "*" means
recursively) and intersect the result with the authenticated user's DN. If the result is non-empty, the ACL is
considered a match and write access is granted.

OpenLDAP Software 2.5 Administrator's Guide

77

http://www.openldap.org/faq/data/cache/1133.html

The following drawing explains how this set is built:

Figure X.Y: Populating a recursive group set

First we get the uid=john DN. This entry doesn't have a member attribute, so the expansion stops here. Now
we get to cn=accountadm. This one does have a member attribute, which is uid=mary. The uid=mary entry,
however, doesn't have member, so we stop here again. The end comparison is:

 {"uid=john,ou=people,dc=example,dc=com","uid=mary,ou=people,dc=example,dc=com"} & user

If the authenticated user's DN is any one of those two, write access is granted. So this set will include mary in
the sudoadm group and she will be allowed the write access.

8.5.2. Group ACLs without DN syntax

The traditional group ACLs, and even the previous example about recursive groups, require that the members
are specified as DNs instead of just usernames.

With sets, however, it's also possible to use simple names in group ACLs, as this example will show.

Let's say we want to allow members of the sudoadm group to write to the ou=sudoers branch of our tree. But
our group definition now is using memberUid for the group members:

 dn: cn=sudoadm,ou=group,dc=example,dc=com
 cn: sudoadm
 objectClass: posixGroup
 gidNumber: 1000
 memberUid: john

With this type of group, we can't use group ACLs. But with a set ACL we can grant the desired access:

 access to dn.subtree="ou=sudoers,dc=example,dc=com"
 by set="[cn=sudoadm,ou=group,dc=example,dc=com]/memberUid & user/uid" write
 by * read

We use a simple intersection where we compare the uid attribute of the connecting (and authenticated) user
with the memberUid attributes of the group. If they match, the intersection is non-empty and the ACL will
grant write access.

This drawing illustrates this set when the connecting user is authenticated as
uid=john,ou=people,dc=example,dc=com:

OpenLDAP Software 2.5 Administrator's Guide

78

Figure X.Y: Sets with memberUid

In this case, it's a match. If it were mary authenticating, however, she would be denied write access to
ou=sudoers because her uid attribute is not listed in the group's memberUid.

8.5.3. Following references

We will now show a quite powerful example of what can be done with sets. This example tends to make
OpenLDAP administrators smile after they have understood it and its implications.

Let's start with an user entry:

 dn: uid=john,ou=people,dc=example,dc=com
 uid: john
 objectClass: inetOrgPerson
 givenName: John
 sn: Smith
 cn: john
 manager: uid=mary,ou=people,dc=example,dc=com

Writing an ACL to allow the manager to update some attributes is quite simple using sets:

 access to dn.exact="uid=john,ou=people,dc=example,dc=com"
 attrs=carLicense,homePhone,mobile,pager,telephoneNumber
 by self write
 by set="this/manager & user" write
 by * read

In that set, this expands to the entry being accessed, so that this/manager expands to
uid=mary,ou=people,dc=example,dc=com when john's entry is accessed. If the manager herself is
accessing John's entry, the ACL will match and write access to those attributes will be granted.

So far, this same behavior can be obtained with the dnattr keyword. With sets, however, we can further
enhance this ACL. Let's say we want to allow the secretary of the manager to also update these attributes. This
is how we do it:

 access to dn.exact="uid=john,ou=people,dc=example,dc=com"
 attrs=carLicense,homePhone,mobile,pager,telephoneNumber
 by self write
 by set="this/manager & user" write
 by set="this/manager/secretary & user" write
 by * read

Now we need a picture to help explain what is happening here (entries shortened for clarity):

OpenLDAP Software 2.5 Administrator's Guide

79

Figure X.Y: Sets jumping through entries

In this example, Jane is the secretary of Mary, which is the manager of John. This whole relationship is
defined with the manager and secretary attributes, which are both of the distinguishedName syntax (i.e., full
DNs). So, when the uid=john entry is being accessed, the this/manager/secretary set becomes
{"uid=jane,ou=people,dc=example,dc=com"} (follow the references in the picture):

 this = [uid=john,ou=people,dc=example,dc=com]
 this/manager = \
 [uid=john,ou=people,dc=example,dc=com]/manager = uid=mary,ou=people,dc=example,dc=com
 this/manager/secretary = \
 [uid=mary,ou=people,dc=example,dc=com]/secretary = uid=jane,ou=people,dc=example,dc=com

The end result is that when Jane accesses John's entry, she will be granted write access to the specified
attributes. Better yet, this will happen to any entry she accesses which has Mary as the manager.

This is all cool and nice, but perhaps gives too much power to secretaries. Maybe we need to further restrict it.
For example, let's only allow executive secretaries to have this power:

 access to dn.exact="uid=john,ou=people,dc=example,dc=com"
 attrs=carLicense,homePhone,mobile,pager,telephoneNumber
 by self write
 by set="this/manager & user" write
 by set="this/manager/secretary &
 [cn=executive,ou=group,dc=example,dc=com]/member* &
 user" write
 by * read

It's almost the same ACL as before, but we now also require that the connecting user be a member of the
(possibly nested) cn=executive group.

OpenLDAP Software 2.5 Administrator's Guide

80

9. Limits

9.1. Introduction

It is usually desirable to limit the server resources that can be consumed by each LDAP client. OpenLDAP
provides two sets of limits: a size limit, which can restrict the number of entries that a client can retrieve in a
single operation, and a time limit which restricts the length of time that an operation may continue. Both types
of limit can be given different values depending on who initiated the operation.

9.2. Soft and Hard limits

The server administrator can specify both soft limits and hard limits. Soft limits can be thought of as being the
default limit value. Hard limits cannot be exceeded by ordinary LDAP users.

LDAP clients can specify their own size and time limits when issuing search operations. This feature has been
present since the earliest version of X.500.

If the client specifies a limit then the lower of the requested value and the hard limit will become the limit for
the operation.

If the client does not specify a limit then the server applies the soft limit.

Soft and Hard limits are often referred to together as administrative limits. Thus, if an LDAP client requests a
search that would return more results than the limits allow it will get an adminLimitExceeded error. Note that
the server will usually return some results even if the limit has been exceeded: this feature is useful to clients
that just want to check for the existence of some entries without needing to see them all.

The rootdn is not subject to any limits.

9.3. Global Limits

Limits specified in the global part of the server configuration act as defaults which are used if no database has
more specific limits set.

In a slapd.conf(5) configuration the keywords are sizelimit and timelimit. When using the slapd config
backend, the corresponding attributes are olcSizeLimit and olcTimeLimit. The syntax of these values are
the same in both cases.

The simple form sets both soft and hard limits to the same value:

 sizelimit {<integer>|unlimited}
 timelimit {<integer>|unlimited}

The default sizelimit is 500 entries and the default timelimit is 3600 seconds.

An extended form allows soft and hard limits to be set separately:

 sizelimit size[.{soft|hard}]=<integer> [...]
 timelimit time[.{soft|hard}]=<integer> [...]

81

Thus, to set a soft sizelimit of 10 entries and a hard limit of 75 entries:

 sizelimit size.soft=10 size.hard=75

9.3.1. Special Size Limits

There are other forms of size limits in addition to the soft and hard limits. Note that when using the simple
sizelimit form, none of these special limits are changed.

9.3.1.1. Unchecked Limits

The unchecked keyword sets a limit on how many entries the server will examine after doing index lookups
but before evaluating filter matches. If the set of candidates exceeds this limit, the search is aborted. The
purpose is to avoid causing excessive workload on slapd if a filter uses attributes that are not properly
indexed, and can be critical for very large directories.

 sizelimit size.unchecked={<integer>|unlimited|disabled}

The default is unlimited. The disabled setting prevents a search from being performed at all. This may be
useful in the per-database limits described below, to disallow searches for a specific set of users.

9.3.1.2. Paged Results Limits

If the LDAP client adds the pagedResultsControl to the search operation, the hard size limit is used by
default, because the request for a specific page size is considered an explicit request for a limitation on the
number of entries to be returned. However, the size limit applies to the total count of entries returned within
the search, and not to a single page.

Additional size limits may be enforced for paged searches.

The size.pr limit controls the maximum page size:

 sizelimit size.pr={<integer>|noEstimate|unlimited}

<integer> is the maximum page size if no explicit size is set. noEstimate has no effect in the current
implementation as the server does not return an estimate of the result size anyway. unlimited indicates that
no limit is applied to the maximum page size.

The size.prtotal limit controls the total number of entries that can be returned by a paged search. By
default the limit is the same as the normal size.hard limit.

 size.prtotal={<integer>|unlimited|disabled}

unlimited removes the limit on the number of entries that can be returned by a paged search. disabled can
be used to selectively disable paged result searches.

9.4. Per-Database Limits

Each database can have its own set of limits that override the global ones. The syntax is more flexible, and it
allows different limits to be applied to different entities. Note that an entity is different from an entry: the term
entity is used here to indicate the ID of the person or process that has initiated the LDAP operation.

OpenLDAP Software 2.5 Administrator's Guide

82

In a slapd.conf(5) configuration the keyword is limits. When using the slapd config backend, the
corresponding attribute is olcLimits. The syntax of the values is the same in both cases.

 limits <selector> <limit> [<limit> [...]]

The limits clause can be specified multiple times to apply different limits to different initiators. The server
examines each clause in turn until it finds one that matches the operation's initiator or base DN. If no match is
found, the global limits will be used.

9.4.1. Specify who the limits apply to

The <selector> part of the limits clause can take any of these values:

Table 9.1: Limits Entity Specifiers

Specifier Entities
* All, including anonymous and authenticated users
anonymous Anonymous (non-authenticated) users
users Authenticated users
dn[.<type>][.<style>]=<pattern>] Entry or entries within a scope that match <pattern>
group[/oc[/at]]=<pattern> Members of a group

Where

type can be one of self or this and

style can be one of exact, base, onelevel, subtree, children, regex, or anonymous

More information can be found in the slapd.conf(5) or slapd-config(5) manual pages.

9.4.2. Specify time limits

The syntax for time limits is

 time[.{soft|hard}]=<integer>

where integer is the number of seconds slapd will spend answering a search request.

If neither soft nor hard is specified, the value is used for both, e.g.:

 limits anonymous time=27

The value unlimited may be used to remove the hard time limit entirely, e.g.:

 limits dn.exact="cn=anyuser,dc=example,dc=org" time.hard=unlimited

9.4.3. Specifying size limits

The syntax for size limit is

 size[.{soft|hard}]=<integer>

OpenLDAP Software 2.5 Administrator's Guide

83

where <integer> is the maximum number of entries slapd will return when answering a search request.

In addition to soft and hard limits, other limits are also available, with the same meanings described for the
global limits configuration above.

9.5. Example Limit Configurations

9.5.1. Simple Global Limits

This simple global configuration fragment applies size and time limits to all searches by all users except
rootdn. It limits searches to 50 results and sets an overall time limit of 10 seconds.

 sizelimit 50
 timelimit 10

9.5.2. Global Hard and Soft Limits

It is sometimes useful to limit the size of result sets but to allow clients to request a higher limit where needed.
This can be achieved by setting separate hard and soft limits.

 sizelimit size.soft=5 size.hard=100

To prevent clients from doing very inefficient non-indexed searches, add the unchecked limit:

 sizelimit size.soft=5 size.hard=100 size.unchecked=100

9.5.3. Giving specific users larger limits

Having set appropriate default limits in the global configuration, you may want to give certain users the
ability to retrieve larger result sets. Here is a way to do that in the per-database configuration:

 limits dn.exact="cn=anyuser,dc=example,dc=org" size=100000
 limits dn.exact="cn=personnel,dc=example,dc=org" size=100000
 limits dn.exact="cn=dirsync,dc=example,dc=org" size=100000

It is generally best to avoid mentioning specific users in the server configuration. A better way is to give the
higher limits to a group:

 limits group/groupOfNames/member="cn=bigwigs,dc=example,dc=org" size=100000

9.5.4. Limiting who can do paged searches

It may be required that certain applications need very large result sets that they retrieve using paged searches,
but that you do not want ordinary LDAP users to use the pagedResults control. The pr and prtotal limits can
help:

 limits group/groupOfNames/member="cn=dirsync,dc=example,dc=org" size.prtotal=unlimited
 limits users size.soft=5 size.hard=100 size.prtotal=disabled
 limits anonymous size.soft=2 size.hard=5 size.prtotal=disabled

OpenLDAP Software 2.5 Administrator's Guide

84

9.6. Glued/Subordinate database configurations

When using subordinate databases, it is necessary for any limits that are to be applied across the parent and its
subordinates to be defined in both the parent and its subordinates. Otherwise the settings on the subordinate
databases are not honored.

9.7. Further Information

For further information please see slapd.conf(5), ldapsearch(1) and slapd.access(5)

OpenLDAP Software 2.5 Administrator's Guide

85

OpenLDAP Software 2.5 Administrator's Guide

86

10. Database Creation and Maintenance Tools
This section tells you how to create a slapd database from scratch, and how to do trouble shooting if you run
into problems. There are two ways to create a database. First, you can create the database on-line using
LDAP. With this method, you simply start up slapd and add entries using the LDAP client of your choice.
This method is fine for relatively small databases (a few hundred or thousand entries, depending on your
requirements). This method works for database types which support updates.

The second method of database creation is to do it off-line using special utilities provided with slapd(8). This
method is best if you have many thousands of entries to create, which would take an unacceptably long time
using the LDAP method, or if you want to ensure the database is not accessed while it is being created. Note
that not all database types support these utilities.

10.1. Creating a database over LDAP

With this method, you use the LDAP client of your choice (e.g., the ldapadd(1)) to add entries, just like you
would once the database is created. You should be sure to set the following options in the configuration file
before starting slapd(8).

 suffix <dn>

As described in the General Database Directives section, this option defines which entries are to be held by
this database. You should set this to the DN of the root of the subtree you are trying to create. For example:

 suffix "dc=example,dc=com"

You should be sure to specify a directory where the index files should be created:

 directory <directory>

For example:

 directory /usr/local/var/openldap-data

You need to create this directory with appropriate permissions such that slapd can write to it.

You need to configure slapd so that you can connect to it as a directory user with permission to add entries.
You can configure the directory to support a special super-user or root user just for this purpose. This is done
through the following two options in the database definition:

 rootdn <dn>
 rootpw <passwd>

For example:

 rootdn "cn=Manager,dc=example,dc=com"
 rootpw secret

These options specify a DN and password that can be used to authenticate as the super-user entry of the
database (i.e., the entry allowed to do anything). The DN and password specified here will always work,
regardless of whether the entry named actually exists or has the password given. This solves the

87

chicken-and-egg problem of how to authenticate and add entries before any entries yet exist.

Finally, you should make sure that the database definition contains the index definitions you want:

 index {<attrlist> | default} [pres,eq,approx,sub,none]

For example, to index the cn, sn, uid and objectclass attributes, the following index directives could be
used:

 index cn,sn,uid pres,eq,approx,sub
 index objectClass eq

This would create presence, equality, approximate, and substring indices for the cn, sn, and uid attributes and
an equality index for the objectClass attribute. Note that not all index types are available with all attribute
types. See The slapd Configuration File section for more information on this option.

Once you have configured things to your liking, start up slapd, connect with your LDAP client, and start
adding entries. For example, to add an organization entry and an organizational role entry using the ldapadd
tool, you could create an LDIF file called entries.ldif with the contents:

 # Organization for Example Corporation
 dn: dc=example,dc=com
 objectClass: dcObject
 objectClass: organization
 dc: example
 o: Example Corporation
 description: The Example Corporation

 # Organizational Role for Directory Manager
 dn: cn=Manager,dc=example,dc=com
 objectClass: organizationalRole
 cn: Manager
 description: Directory Manager

and then use a command like this to actually create the entry:

 ldapadd -f entries.ldif -x -D "cn=Manager,dc=example,dc=com" -w secret

The above command assumes settings provided in the above examples.

10.2. Creating a database off-line

The second method of database creation is to do it off-line, using the slapd database tools described below.
This method is best if you have many thousands of entries to create, which would take an unacceptably long
time to add using the LDAP method described above. These tools read the slapd configuration file and an
input file containing a text representation of the entries to add. For database types which support the tools,
they produce the database files directly (otherwise you must use the on-line method above). Also, the input
file must be completely valid, as these tools do fewer consistency checks than the on-line method.

Note: this Guide is not meant to provide exhaustive documentation on the software. The tool descriptions here
only list a few of the available options for each command. Read the associated manpages for complete
documentation on all of the available options.

OpenLDAP Software 2.5 Administrator's Guide

88

There are several important configuration options you will want to be sure and set in the config file database
definition first:

 suffix <dn>

As described in the General Database Directives section, this option defines which entries are to be held by
this database. You should set this to the DN of the root of the subtree you are trying to create. For example:

 suffix "dc=example,dc=com"

You should be sure to specify a directory where the index files should be created:

 directory <directory>

For example:

 directory /usr/local/var/openldap-data

Finally, you need to specify which indices you want to build. This is done by one or more index options.

 index {<attrlist> | default} [pres,eq,approx,sub,none]

For example:

 index cn,sn,uid pres,eq,approx,sub
 index objectClass eq

This would create presence, equality, approximate, and substring indices for the cn, sn, and uid attributes and
an equality index for the objectClass attribute. Note that not all index types are available with all attribute
types. See The slapd Configuration File section for more information on this option.

10.2.1. The slapadd program

Once you've configured things to your liking, you create the primary database and associated indices by
running the slapadd(8) program:

 slapadd -l <inputfile> -f <slapdconfigfile>
 [-d <debuglevel>] [-n <integer>|-b <suffix>]

The arguments have the following meanings:

 -l <inputfile>

Specifies the LDIF input file containing the entries to add in text form (described below in the The LDIF text
entry format section).

 -f <slapdconfigfile>

Specifies the slapd configuration file that tells where to create the indices, what indices to create, etc.

 -F <slapdconfdirectory>

OpenLDAP Software 2.5 Administrator's Guide

89

Specifies a config directory. If both -f and -F are specified, the config file will be read and converted to
config directory format and written to the specified directory. If neither option is specified, an attempt to read
the default config directory will be made before trying to use the default config file. If a valid config directory
exists then the default config file is ignored. If dryrun mode is also specified, no conversion will occur.

 -d <debuglevel>

Turn on debugging, as specified by <debuglevel>. The debug levels are the same as for slapd. See the
Command-Line Options section in Running slapd.

 -n <databasenumber>

An optional argument that specifies which database to modify. The first database listed in the configuration
file is 1, the second 2, etc. By default, the first database in the configuration file is used. Should not be used in
conjunction with -b.

 -b <suffix>

An optional argument that specifies which database to modify. The provided suffix is matched against a
database suffix directive to determine the database number. Should not be used in conjunction with -n.

10.2.2. The slapindex program

Sometimes it may be necessary to regenerate indices (such as after modifying slapd.conf(5)). This is possible
using the slapindex(8) program. slapindex is invoked like this

 slapindex -f <slapdconfigfile>
 [-d <debuglevel>] [-n <databasenumber>|-b <suffix>] [attr...]

Where the -f, -d, -n and -b options are the same as for the slapadd(1) program. If no specific attributes are
listed, slapindex rebuilds all indices based upon the current database contents.

10.2.3. The slapcat program

The slapcat program is used to dump the database to an LDIF file. This can be useful when you want to
make a human-readable backup of your database or when you want to edit your database off-line. The
program is invoked like this:

 slapcat -l <filename> -f <slapdconfigfile>
 [-d <debuglevel>] [-n <databasenumber>|-b <suffix>]

where -n or -b is used to select the database in the slapd.conf(5) specified using -f. The corresponding LDIF
output is written to standard output or to the file specified using the -l option.

10.3. The LDIF text entry format

The LDAP Data Interchange Format (LDIF) is used to represent LDAP entries in a simple text format. This
section provides a brief description of the LDIF entry format which complements ldif(5) and the technical
specification RFC2849.

The basic form of an entry is:

OpenLDAP Software 2.5 Administrator's Guide

90

https://www.rfc-editor.org/rfc/rfc2849.txt

 # comment
 dn: <distinguished name>
 <attrdesc>: <attrvalue>
 <attrdesc>: <attrvalue>

 ...

Lines starting with a '#' character are comments. An attribute description may be a simple attribute type like
cn or objectClass or 1.2.3 (an OID associated with an attribute type) or may include options such as
cn;lang_en_US or userCertificate;binary.

A line may be continued by starting the next line with a single space or tab character. For example:

 dn: cn=Barbara J Jensen,dc=example,dc=
 com
 cn: Barbara J
 Jensen

is equivalent to:

 dn: cn=Barbara J Jensen,dc=example,dc=com
 cn: Barbara J Jensen

Multiple attribute values are specified on separate lines. e.g.,

 cn: Barbara J Jensen
 cn: Babs Jensen

If an <attrvalue> contains non-printing characters or begins with a space, a colon (':'), or a less than ('<'),
the <attrdesc> is followed by a double colon and the base64 encoding of the value. For example, the value "
begins with a space" would be encoded like this:

 cn:: IGJlZ2lucyB3aXRoIGEgc3BhY2U=

You can also specify a URL containing the attribute value. For example, the following specifies the
jpegPhoto value should be obtained from the file /path/to/file.jpeg.

 jpegPhoto:< file:///path/to/file.jpeg

Multiple entries within the same LDIF file are separated by blank lines. Here's an example of an LDIF file
containing three entries.

 # Barbara's Entry
 dn: cn=Barbara J Jensen,dc=example,dc=com
 cn: Barbara J Jensen
 cn: Babs Jensen
 objectClass: person
 sn: Jensen

 # Bjorn's Entry
 dn: cn=Bjorn J Jensen,dc=example,dc=com
 cn: Bjorn J Jensen
 cn: Bjorn Jensen
 objectClass: person
 sn: Jensen
 # Base64 encoded JPEG photo

OpenLDAP Software 2.5 Administrator's Guide

91

 jpegPhoto:: /9j/4AAQSkZJRgABAAAAAQABAAD/2wBDABALD
 A4MChAODQ4SERATGCgaGBYWGDEjJR0oOjM9PDkzODdASFxOQ
 ERXRTc4UG1RV19iZ2hnPk1xeXBkeFxlZ2P/2wBDARESEhgVG

 # Jennifer's Entry
 dn: cn=Jennifer J Jensen,dc=example,dc=com
 cn: Jennifer J Jensen
 cn: Jennifer Jensen
 objectClass: person
 sn: Jensen
 # JPEG photo from file
 jpegPhoto:< file:///path/to/file.jpeg

Notice that the jpegPhoto in Bjorn's entry is base 64 encoded and the jpegPhoto in Jennifer's entry is
obtained from the location indicated by the URL.

Note: Trailing spaces are not trimmed from values in an LDIF file. Nor are multiple internal spaces
compressed. If you don't want them in your data, don't put them there.

OpenLDAP Software 2.5 Administrator's Guide

92

11. Backends
Backends do the actual work of storing or retrieving data in response to LDAP requests. Backends may be
compiled statically into slapd, or when module support is enabled, they may be dynamically loaded.

If your installation uses dynamic modules, you may need to add the relevant moduleload directives to the
examples that follow. The name of the module for a backend is usually of the form:

 back_<backend name>.la

So for example, if you need to load the mdb backend, you would configure

 moduleload back_mdb.la

11.1. LDAP

11.1.1. Overview

The LDAP backend to slapd(8) is not an actual database; instead it acts as a proxy to forward incoming
requests to another LDAP server. While processing requests it will also chase referrals, so that referrals are
fully processed instead of being returned to the slapd client.

Sessions that explicitly Bind to the back-ldap database always create their own private connection to the
remote LDAP server. Anonymous sessions will share a single anonymous connection to the remote server.
For sessions bound through other mechanisms, all sessions with the same DN will share the same connection.
This connection pooling strategy can enhance the proxy's efficiency by reducing the overhead of repeatedly
making/breaking multiple connections.

The ldap database can also act as an information service, i.e. the identity of locally authenticated clients is
asserted to the remote server, possibly in some modified form. For this purpose, the proxy binds to the remote
server with some administrative identity, and, if required, authorizes the asserted identity.

It is heavily used by a lot of other Backends and Overlays.

11.1.2. back-ldap Configuration

As previously mentioned, slapd-ldap(5) is used behind the scenes by many other Backends and Overlays.
Some of them merely provide a few configuration directive themselves, but have available to the
administrator the whole of the slapd-ldap(5) options.

For example, the Translucent Proxy, which retrieves entries from a remote LDAP server that can be partially
overridden by the defined database, has only four specific translucent- directives, but can be configured using
any of the normal slapd-ldap(5) options. See slapo-translucent(5) for details.

Other Overlays allow you to tag directives in front of a normal slapd-ldap(5) directive. For example, the
slapo-chain(5) overlay does this:

"There are very few chain overlay specific directives; however, directives related to the instances of the ldap
backend that may be implicitly instantiated by the overlay may assume a special meaning when used in

93

conjunction with this overlay. They are described in slapd-ldap(5), and they also need to be prefixed by
chain-."

You may have also seen the slapd-ldap(5) backend used and described in the Push Based Replication section
of the guide.

It should therefore be obvious that the slapd-ldap(5) backend is extremely flexible and heavily used
throughout the OpenLDAP Suite.

The following is a very simple example, but already the power of the slapd-ldap(5) backend is seen by use of
a uri list:

 database ldap
 suffix "dc=suretecsystems,dc=com"
 rootdn "cn=slapd-ldap"
 uri ldap://localhost/ ldap://remotehost ldap://remotehost2

The URI list is space or comma-separated. Whenever the server that responds is not the first one in the list, the
list is rearranged and the responsive server is moved to the head, so that it will be first contacted the next time
a connection needs be created.

This feature can be used to provide a form of load balancing when using Mirror mode replication.

11.1.3. Further Information

slapd-ldap(5)

11.2. LDIF

11.2.1. Overview

The LDIF backend to slapd(8) is a basic storage backend that stores entries in text files in LDIF format, and
exploits the filesystem to create the tree structure of the database. It is intended as a cheap, low performance
easy to use backend.

When using the cn=config dynamic configuration database with persistent storage, the configuration data is
stored using this backend. See slapd-config(5) for more information

11.2.2. back-ldif Configuration

Like many other backends, the LDIF backend can be instantiated with very few configuration lines:

 include ./schema/core.schema

 database ldif
 directory ./ldif
 suffix "dc=suretecsystems,dc=com"
 rootdn "cn=LDIF,dc=suretecsystems,dc=com"
 rootpw LDIF

If we add the dcObject for dc=suretecsystems,dc=com, you can see how this is added behind the scenes on
the file system:

OpenLDAP Software 2.5 Administrator's Guide

94

 dn: dc=suretecsystems,dc=com
 objectClass: dcObject
 objectClass: organization
 dc: suretecsystems
 o: Suretec Systems Ltd

Now we add it to the directory:

 ldapadd -x -H ldap://localhost:9011 -f suretec.ldif -D "cn=LDIF,dc=suretecsystems,dc=com" -w LDIF
 adding new entry "dc=suretecsystems,dc=com"

And inside ./ldif we have:

 ls ./ldif
 dc=suretecsystems,dc=com.ldif

which again contains:

 cat ldif/dc\=suretecsystems\,dc\=com.ldif

 dn: dc=suretecsystems
 objectClass: dcObject
 objectClass: organization
 dc: suretecsystems
 o: Suretec Systems Ltd.
 structuralObjectClass: organization
 entryUUID: 2134b714-e3a1-102c-9a15-f96ee263886d
 creatorsName: cn=LDIF,dc=suretecsystems,dc=com
 createTimestamp: 20080711142643Z
 entryCSN: 20080711142643.661124Z#000000#000#000000
 modifiersName: cn=LDIF,dc=suretecsystems,dc=com
 modifyTimestamp: 20080711142643Z

This is the complete format you would get when exporting your directory using slapcat etc.

11.2.3. Further Information

slapd-ldif(5)

11.3. LMDB

11.3.1. Overview

The mdb backend to slapd(8) is the recommended primary backend for a normal slapd database. It uses
OpenLDAP's own Lightning Memory-Mapped Database (LMDB) library to store data and replaces the
BerkeleyDB backends used in older OpenLDAP releases.

It supports indexing, it uses no caching, and requires no tuning to deliver maximum search performance. It is
fully hierarchical and supports subtree renames in constant time.

11.3.2. back-mdb Configuration

The mdb backend can be instantiated with very few configuration lines:

OpenLDAP Software 2.5 Administrator's Guide

95

 include ./schema/core.schema

 database mdb
 directory ./mdb
 suffix "dc=suretecsystems,dc=com"
 rootdn "cn=mdb,dc=suretecsystems,dc=com"
 rootpw mdb
 maxsize 1073741824

In addition to the usual parameters that a minimal configuration requires, the mdb backend requires a
maximum size to be set. This should be the largest that the database is ever anticipated to grow (in bytes). The
filesystem must also provide enough free space to accommodate this size.

11.3.3. Further Information

slapd-mdb(5)

11.4. Metadirectory

11.4.1. Overview

The meta backend to slapd(8) performs basic LDAP proxying with respect to a set of remote LDAP servers,
called "targets". The information contained in these servers can be presented as belonging to a single
Directory Information Tree (DIT).

A basic knowledge of the functionality of the slapd-ldap(5) backend is recommended. This backend has been
designed as an enhancement of the ldap backend. The two backends share many features (actually they also
share portions of code). While the ldap backend is intended to proxy operations directed to a single server, the
meta backend is mainly intended for proxying of multiple servers and possibly naming context masquerading.

These features, although useful in many scenarios, may result in excessive overhead for some applications, so
its use should be carefully considered.

11.4.2. back-meta Configuration

LATER

11.4.3. Further Information

slapd-meta(5)

11.5. Monitor

11.5.1. Overview

The monitor backend to slapd(8) is not an actual database; if enabled, it is automatically generated and
dynamically maintained by slapd with information about the running status of the daemon.

To inspect all monitor information, issue a subtree search with base cn=Monitor, requesting that attributes "+"
and "*" are returned. The monitor backend produces mostly operational attributes, and LDAP only returns

OpenLDAP Software 2.5 Administrator's Guide

96

operational attributes that are explicitly requested. Requesting attribute "+" is an extension which requests all
operational attributes.

See the Monitoring section.

11.5.2. back-monitor Configuration

The monitor database can be instantiated only once, i.e. only one occurrence of "database monitor" can occur
in the slapd.conf(5) file. Also the suffix is automatically set to "cn=Monitor".

You can however set a rootdn and rootpw. The following is all that is needed to instantiate a monitor
backend:

 include ./schema/core.schema

 database monitor
 rootdn "cn=monitoring,cn=Monitor"
 rootpw monitoring

You can also apply Access Control to this database like any other database, for example:

 access to dn.subtree="cn=Monitor"
 by dn.exact="uid=Admin,dc=my,dc=org" write
 by users read
 by * none

Note: The core.schema must be loaded for the monitor database to work.

A small example of the data returned via ldapsearch would be:

 ldapsearch -x -H ldap://localhost:9011 -b 'cn=Monitor'
 # extended LDIF
 #
 # LDAPv3
 # base <cn=Monitor> with scope subtree
 # filter: (objectclass=*)
 # requesting: ALL
 #

 # Monitor
 dn: cn=Monitor
 objectClass: monitorServer
 cn: Monitor
 description: This subtree contains monitoring/managing objects.
 description: This object contains information about this server.
 description: Most of the information is held in operational attributes, which
 must be explicitly requested.

 # Backends, Monitor
 dn: cn=Backends,cn=Monitor
 objectClass: monitorContainer
 cn: Backends
 description: This subsystem contains information about available backends.

Please see the Monitoring section for complete examples of information available via this backend.

OpenLDAP Software 2.5 Administrator's Guide

97

11.5.3. Further Information

slapd-monitor(5)

11.6. Null

11.6.1. Overview

The Null backend to slapd(8) is surely the most useful part of slapd:

Searches return success but no entries.•
Compares return compareFalse.•
Updates return success (unless readonly is on) but do nothing.•
Binds other than as the rootdn fail unless the database option "bind on" is given.•
The slapadd(8) and slapcat(8) tools are equally exciting.•

Inspired by the /dev/null device.

11.6.2. back-null Configuration

This has to be one of the shortest configurations you'll ever do. In order to test this, your slapd.conf file
would look like:

 database null
 suffix "cn=Nothing"
 bind on

bind on means:

"Allow binds as any DN in this backend's suffix, with any password. The default is "off"."

To test this backend with ldapsearch:

 ldapsearch -x -H ldap://localhost:9011 -D "uid=none,cn=Nothing" -w testing -b 'cn=Nothing'
 # extended LDIF
 #
 # LDAPv3
 # base <cn=Nothing> with scope subtree
 # filter: (objectclass=*)
 # requesting: ALL
 #

 # search result
 search: 2
 result: 0 Success

 # numResponses: 1

11.6.3. Further Information

slapd-null(5)

OpenLDAP Software 2.5 Administrator's Guide

98

11.7. Passwd

11.7.1. Overview

The PASSWD backend to slapd(8) serves up the user account information listed in the system passwd(5) file
(defaulting to /etc/passwd).

This backend is provided for demonstration purposes only. The DN of each entry is
"uid=<username>,<suffix>".

11.7.2. back-passwd Configuration

The configuration using slapd.conf a slightly longer, but not much. For example:

 include ./schema/core.schema

 database passwd
 suffix "cn=passwd"

Again, testing this with ldapsearch would result in something like:

 ldapsearch -x -H ldap://localhost:9011 -b 'cn=passwd'
 # extended LDIF
 #
 # LDAPv3
 # base <cn=passwd> with scope subtree
 # filter: (objectclass=*)
 # requesting: ALL
 #

 # passwd
 dn: cn=passwd
 cn: passwd
 objectClass: organizationalUnit

 # root, passwd
 dn: uid=root,cn=passwd
 objectClass: person
 objectClass: uidObject
 uid: root
 cn: root
 sn: root
 description: root

11.7.3. Further Information

slapd-passwd(5)

11.8. Perl

11.8.1. Overview

The Perl backend to slapd(8) works by embedding a perl(1) interpreter into slapd(8). Any perl database

OpenLDAP Software 2.5 Administrator's Guide

99

section of the configuration file slapd.conf(5) must then specify what Perl module to use. Slapd then creates a
new Perl object that handles all the requests for that particular instance of the backend.

11.8.2. back-perl Configuration

LATER

11.8.3. Further Information

slapd-perl(5)

11.9. Relay

11.9.1. Overview

The primary purpose of this slapd(8) backend is to map a naming context defined in a database running in the
same slapd(8) instance into a virtual naming context, with attributeType and objectClass manipulation, if
required. It requires the rwm overlay.

This backend and the above mentioned overlay are experimental.

11.9.2. back-relay Configuration

LATER

11.9.3. Further Information

slapd-relay(5)

11.10. SQL

11.10.1. Overview

The primary purpose of this slapd(8) backend is to PRESENT information stored in some RDBMS as an
LDAP subtree without any programming (some SQL and maybe stored procedures can't be considered
programming, anyway ;).

That is, for example, when you (some ISP) have account information you use in an RDBMS, and want to use
modern solutions that expect such information in LDAP (to authenticate users, make email lookups etc.). Or
you want to synchronize or distribute information between different sites/applications that use RDBMSes
and/or LDAP. Or whatever else...

It is NOT designed as a general-purpose backend that uses RDBMS instead of LMDB (as the standard
back-mdb backend does), though it can be used as such with several limitations. Please see LDAP vs RDBMS
for discussion.

The idea is to use some meta-information to translate LDAP queries to SQL queries, leaving relational
schema untouched, so that old applications can continue using it without any modifications. This allows SQL
and LDAP applications to interoperate without replication, and exchange data as needed.

OpenLDAP Software 2.5 Administrator's Guide

100

The SQL backend is designed to be tunable to virtually any relational schema without having to change
source (through that meta-information mentioned). Also, it uses ODBC to connect to RDBMSes, and is highly
configurable for SQL dialects RDBMSes may use, so it may be used for integration and distribution of data
on different RDBMSes, OSes, hosts etc., in other words, in highly heterogeneous environments.

This backend is experimental and deprecated.

11.10.2. back-sql Configuration

This backend has to be one of the most abused and complex backends there is. Therefore, we will go through
a simple, small example that comes with the OpenLDAP source and can be found in
servers/slapd/back-sql/rdbms_depend/README

For this example we will be using PostgreSQL.

First, we add to /etc/odbc.ini a block of the form:

 [example] <===
 Description = Example for OpenLDAP's back-sql
 Driver = PostgreSQL
 Trace = No
 Database = example <===
 Servername = localhost
 UserName = manager <===
 Password = secret <===
 Port = 5432
 ;Protocol = 6.4
 ReadOnly = No
 RowVersioning = No
 ShowSystemTables = No
 ShowOidColumn = No
 FakeOidIndex = No
 ConnSettings =

The relevant information for our test setup is highlighted with '<===' on the right above.

Next, we add to /etc/odbcinst.ini a block of the form:

 [PostgreSQL]
 Description = ODBC for PostgreSQL
 Driver = /usr/lib/libodbcpsql.so
 Setup = /usr/lib/libodbcpsqlS.so
 FileUsage = 1

We will presume you know how to create a database and user in PostgreSQL and how to set a password. Also,
we'll presume you can populate the 'example' database you've just created with the following files, as found in
servers/slapd/back-sql/rdbms_depend/pgsql

 backsql_create.sql, testdb_create.sql, testdb_data.sql, testdb_metadata.sql

Lastly, run the test:

 [root@localhost]# cd $SOURCES/tests
 [root@localhost]# SLAPD_USE_SQL=pgsql ./run sql-test000

OpenLDAP Software 2.5 Administrator's Guide

101

Briefly, you should see something like (cut short for space):

 Cleaning up test run directory leftover from previous run.
 Running ./scripts/sql-test000-read...
 running defines.sh
 Starting slapd on TCP/IP port 9011...
 Testing SQL backend read operations...
 Waiting 5 seconds for slapd to start...
 Testing correct bind... dn:cn=Mitya Kovalev,dc=example,dc=com
 Testing incorrect bind (should fail)... ldap_bind: Invalid credentials (49)

 Filtering original ldif...
 Comparing filter output...
 >>>>> Test succeeded

The test is basically readonly; this can be performed by all RDBMSes (listed above).

There is another test, sql-test900-write, which is currently enabled only for PostgreSQL and IBM db2.

Using sql-test000, files in servers/slapd/back-sql/rdbms_depend/pgsql/ and the man page, you
should be set.

Note: This backend is experimental and deprecated.

11.10.3. Further Information

slapd-sql(5) and servers/slapd/back-sql/rdbms_depend/README

OpenLDAP Software 2.5 Administrator's Guide

102

12. Overlays
Overlays are software components that provide hooks to functions analogous to those provided by backends,
which can be stacked on top of the backend calls and as callbacks on top of backend responses to alter their
behavior.

Overlays may be compiled statically into slapd, or when module support is enabled, they may be dynamically
loaded. Most of the overlays are only allowed to be configured on individual databases.

Some can be stacked on the frontend as well, for global use. This means that they can be executed after a
request is parsed and validated, but right before the appropriate database is selected. The main purpose is to
affect operations regardless of the database they will be handled by, and, in some cases, to influence the
selection of the database by massaging the request DN.

Essentially, overlays represent a means to:

customize the behavior of existing backends without changing the backend code and without
requiring one to write a new custom backend with complete functionality

•

write functionality of general usefulness that can be applied to different backend types•

When using slapd.conf(5), overlays that are configured before any other databases are considered global, as
mentioned above. In fact they are implicitly stacked on top of the frontend database. They can also be
explicitly configured as such:

 database frontend
 overlay <overlay name>

Overlays are usually documented by separate specific man pages in section 5; the naming convention is

 slapo-<overlay name>

All distributed core overlays have a man page. Feel free to contribute to any, if you think there is anything
missing in describing the behavior of the component and the implications of all the related configuration
directives.

Official overlays are located in

 servers/slapd/overlays/

That directory also contains the file slapover.txt, which describes the rationale of the overlay implementation,
and may serve as a guideline for the development of custom overlays.

Contribware overlays are located in

 contrib/slapd-modules/<overlay name>/

along with other types of run-time loadable components; they are officially distributed, but not maintained by
the project.

All the current overlays in OpenLDAP are listed and described in detail in the following sections.

103

12.1. Access Logging

12.1.1. Overview

This overlay can record accesses to a given backend database on another database.

This allows all of the activity on a given database to be reviewed using arbitrary LDAP queries, instead of just
logging to local flat text files. Configuration options are available for selecting a subset of operation types to
log, and to automatically prune older log records from the logging database. Log records are stored with audit
schema to assure their readability whether viewed as LDIF or in raw form.

It is also used for delta-syncrepl replication

Note: An accesslog database is unique to a given provider. It should never be replicated.

12.1.2. Access Logging Configuration

The following is a basic example that implements Access Logging:

 database mdb
 suffix dc=example,dc=com
 ...
 overlay accesslog
 logdb cn=log
 logops writes reads
 logold (objectclass=person)

 database mdb
 suffix cn=log
 ...
 index reqStart eq
 access to *
 by dn.base="cn=admin,dc=example,dc=com" read

The following is an example used for delta-syncrepl replication:

 database mdb
 suffix cn=accesslog
 directory /usr/local/var/openldap-accesslog
 rootdn cn=accesslog
 index default eq
 index entryCSN,objectClass,reqEnd,reqResult,reqStart,reqDN

Accesslog overlay definitions for the primary db

 database mdb
 suffix dc=example,dc=com
 ...
 overlay accesslog
 logdb cn=accesslog
 logops writes
 logsuccess TRUE
 # scan the accesslog DB every day, and purge entries older than 7 days
 logpurge 07+00:00 01+00:00

OpenLDAP Software 2.5 Administrator's Guide

104

An example search result against cn=accesslog might look like:

 [ghenry@suretec ghenry]# ldapsearch -x -b cn=accesslog
 # extended LDIF
 #
 # LDAPv3
 # base <cn=accesslog> with scope subtree
 # filter: (objectclass=*)
 # requesting: ALL
 #

 # accesslog
 dn: cn=accesslog
 objectClass: auditContainer
 cn: accesslog

 # 20080110163829.000004Z, accesslog
 dn: reqStart=20080110163829.000004Z,cn=accesslog
 objectClass: auditModify
 reqStart: 20080110163829.000004Z
 reqEnd: 20080110163829.000005Z
 reqType: modify
 reqSession: 196696
 reqAuthzID: cn=admin,dc=suretecsystems,dc=com
 reqDN: uid=suretec-46022f8$,ou=Users,dc=suretecsystems,dc=com
 reqResult: 0
 reqMod: sambaPwdCanChange:- ###CENSORED###
 reqMod: sambaPwdCanChange:+ ###CENSORED###
 reqMod: sambaNTPassword:- ###CENSORED###
 reqMod: sambaNTPassword:+ ###CENSORED###
 reqMod: sambaPwdLastSet:- ###CENSORED###
 reqMod: sambaPwdLastSet:+ ###CENSORED###
 reqMod: entryCSN:= 20080110163829.095157Z#000000#000#000000
 reqMod: modifiersName:= cn=admin,dc=suretecsystems,dc=com
 reqMod: modifyTimestamp:= 20080110163829Z

 # search result
 search: 2
 result: 0 Success

 # numResponses: 3
 # numEntries: 2

12.1.3. Further Information

slapo-accesslog(5) and the delta-syncrepl replication section.

12.2. Audit Logging

The Audit Logging overlay can be used to record all changes on a given backend database to a specified log
file.

12.2.1. Overview

If the need arises whereby changes need to be logged as standard LDIF, then the auditlog overlay
slapo-auditlog (5) can be used. Full examples are available in the man page slapo-auditlog (5)

OpenLDAP Software 2.5 Administrator's Guide

105

12.2.2. Audit Logging Configuration

If the directory is running vi slapd.d, then the following LDIF could be used to add the overlay to the
overlay list in cn=config and set what file the LDIF gets logged to (adjust to suit)

 dn: olcOverlay=auditlog,olcDatabase={1}mdb,cn=config
 changetype: add
 objectClass: olcOverlayConfig
 objectClass: olcAuditLogConfig
 olcOverlay: auditlog
 olcAuditlogFile: /tmp/auditlog.ldif

In this example for testing, we are logging changes to /tmp/auditlog.ldif

A typical LDIF file created by slapo-auditlog(5) would look like:

 # add 1196797576 dc=suretecsystems,dc=com cn=admin,dc=suretecsystems,dc=com
 dn: dc=suretecsystems,dc=com
 changetype: add
 objectClass: dcObject
 objectClass: organization
 dc: suretecsystems
 o: Suretec Systems Ltd.
 structuralObjectClass: organization
 entryUUID: 1606f8f8-f06e-1029-8289-f0cc9d81e81a
 creatorsName: cn=admin,dc=suretecsystems,dc=com
 modifiersName: cn=admin,dc=suretecsystems,dc=com
 createTimestamp: 20051123130912Z
 modifyTimestamp: 20051123130912Z
 entryCSN: 20051123130912.000000Z#000001#000#000000
 auditContext: cn=accesslog
 # end add 1196797576

 # add 1196797577 dc=suretecsystems,dc=com cn=admin,dc=suretecsystems,dc=com
 dn: ou=Groups,dc=suretecsystems,dc=com
 changetype: add
 objectClass: top
 objectClass: organizationalUnit
 ou: Groups
 structuralObjectClass: organizationalUnit
 entryUUID: 160aaa2a-f06e-1029-828a-f0cc9d81e81a
 creatorsName: cn=admin,dc=suretecsystems,dc=com
 modifiersName: cn=admin,dc=suretecsystems,dc=com
 createTimestamp: 20051123130912Z
 modifyTimestamp: 20051123130912Z
 entryCSN: 20051123130912.000000Z#000002#000#000000
 # end add 1196797577

12.2.3. Further Information

slapo-auditlog(5)

12.3. Chaining

OpenLDAP Software 2.5 Administrator's Guide

106

12.3.1. Overview

The chain overlay provides basic chaining capability to the underlying database.

What is chaining? It indicates the capability of a DSA to follow referrals on behalf of the client, so that
distributed systems are viewed as a single virtual DSA by clients that are otherwise unable to "chase" (i.e.
follow) referrals by themselves.

The chain overlay is built on top of the ldap backend; it is compiled by default when --enable-ldap.

12.3.2. Chaining Configuration

In order to demonstrate how this overlay works, we shall discuss a typical scenario which might be one
provider server and three Syncrepl replicas.

On each replica, add this near the top of the slapd.conf(5) file (global), before any database definitions:

 overlay chain
 chain-uri "ldap://ldapprovider.example.com"
 chain-idassert-bind bindmethod="simple"
 binddn="cn=Manager,dc=example,dc=com"
 credentials="<secret>"
 mode="self"
 chain-tls start
 chain-return-error TRUE

Add this below your syncrepl statement:

 updateref "ldap://ldapprovider.example.com/"

The chain-tls statement enables TLS from the replica to the ldap provider. The DITs are exactly the same
between these machines, therefore whatever user bound to the replica will also exist on the provider. If that
DN does not have update privileges on the provider, nothing will happen.

You will need to restart the replica after these slapd.conf changes. Then, if you are using loglevel stats (256),
you can monitor an ldapmodify on the replica and the provider. (If you're using cn=config no restart is
required.)

Now start an ldapmodify on the replica and watch the logs. You should expect something like:

 Sep 6 09:27:25 replica1 slapd[29274]: conn=11 fd=31 ACCEPT from IP=143.199.102.216:45181 (IP=143.199.102.216:389)
 Sep 6 09:27:25 replica1 slapd[29274]: conn=11 op=0 STARTTLS
 Sep 6 09:27:25 replica1 slapd[29274]: conn=11 op=0 RESULT oid= err=0 text=
 Sep 6 09:27:25 replica1 slapd[29274]: conn=11 fd=31 TLS established tls_ssf=256 ssf=256
 Sep 6 09:27:28 replica1 slapd[29274]: conn=11 op=1 BIND dn="uid=user1,ou=people,dc=example,dc=com" method=128
 Sep 6 09:27:28 replica1 slapd[29274]: conn=11 op=1 BIND dn="uid=user1,ou=People,dc=example,dc=com" mech=SIMPLE ssf=0
 Sep 6 09:27:28 replica1 slapd[29274]: conn=11 op=1 RESULT tag=97 err=0 text=
 Sep 6 09:27:28 replica1 slapd[29274]: conn=11 op=2 MOD dn="uid=user1,ou=People,dc=example,dc=com"
 Sep 6 09:27:28 replica1 slapd[29274]: conn=11 op=2 MOD attr=mail
 Sep 6 09:27:28 replica1 slapd[29274]: conn=11 op=2 RESULT tag=103 err=0 text=
 Sep 6 09:27:28 replica1 slapd[29274]: conn=11 op=3 UNBIND
 Sep 6 09:27:28 replica1 slapd[29274]: conn=11 fd=31 closed
 Sep 6 09:27:28 replica1 slapd[29274]: syncrepl_entry: LDAP_RES_SEARCH_ENTRY(LDAP_SYNC_MODIFY)
 Sep 6 09:27:28 replica1 slapd[29274]: syncrepl_entry: be_search (0)

OpenLDAP Software 2.5 Administrator's Guide

107

 Sep 6 09:27:28 replica1 slapd[29274]: syncrepl_entry: uid=user1,ou=People,dc=example,dc=com
 Sep 6 09:27:28 replica1 slapd[29274]: syncrepl_entry: be_modify (0)

And on the provider you will see this:

 Sep 6 09:23:57 ldapprovider slapd[2961]: conn=55902 op=3 PROXYAUTHZ dn="uid=user1,ou=people,dc=example,dc=com"
 Sep 6 09:23:57 ldapprovider slapd[2961]: conn=55902 op=3 MOD dn="uid=user1,ou=People,dc=example,dc=com"
 Sep 6 09:23:57 ldapprovider slapd[2961]: conn=55902 op=3 MOD attr=mail
 Sep 6 09:23:57 ldapprovider slapd[2961]: conn=55902 op=3 RESULT tag=103 err=0 text=

Note: You can clearly see the PROXYAUTHZ line on the provider, indicating the proper identity assertion
for the update on the provider. Also note the replica immediately receiving the Syncrepl update from the
provider.

12.3.3. Handling Chaining Errors

By default, if chaining fails, the original referral is returned to the client under the assumption that the client
might want to try and follow the referral.

With the following directive however, if the chaining fails at the provider side, the actual error is returned to
the client.

 chain-return-error TRUE

12.3.4. Read-Back of Chained Modifications

Occasionally, applications want to read back the data that they just wrote. If a modification requested to a
shadow server was silently chained to its provider, an immediate read could result in receiving data not yet
synchronized. In those cases, clients should use the dontusecopy control to ensure they are directed to the
authoritative source for that piece of data.

This control usually causes a referral to the actual source of the data to be returned. However, when the
slapo-chain(5) overlay is used, it intercepts the referral being returned in response to the dontusecopy control,
and tries to fetch the requested data.

12.3.5. Further Information

slapo-chain(5)

12.4. Constraints

12.4.1. Overview

This overlay enforces a regular expression constraint on all values of specified attributes during an LDAP
modify request that contains add or modify commands. It is used to enforce a more rigorous syntax when the
underlying attribute syntax is too general.

OpenLDAP Software 2.5 Administrator's Guide

108

12.4.2. Constraint Configuration

Configuration via slapd.conf(5) would look like:

 overlay constraint
 constraint_attribute mail regex ^[[:alnum:]]+@mydomain.com$
 constraint_attribute title uri
 ldap:///dc=catalog,dc=example,dc=com?title?sub?(objectClass=titleCatalog)

A specification like the above would reject any mail attribute which did not look like <alphanumeric
string>@mydomain.com.

It would also reject any title attribute whose values were not listed in the title attribute of any titleCatalog
entries in the given scope.

An example for use with cn=config:

 dn: olcOverlay=constraint,olcDatabase={1}mdb,cn=config
 changetype: add
 objectClass: olcOverlayConfig
 objectClass: olcConstraintConfig
 olcOverlay: constraint
 olcConstraintAttribute: mail regex ^[[:alnum:]]+@mydomain.com$
 olcConstraintAttribute: title uri ldap:///dc=catalog,dc=example,dc=com?title?sub?(objectClass=titleCatalog)

12.4.3. Further Information

slapo-constraint(5)

12.5. Dynamic Directory Services

12.5.1. Overview

The dds overlay to slapd(8) implements dynamic objects as per RFC2589. The name dds stands for Dynamic
Directory Services. It allows to define dynamic objects, characterized by the dynamicObject objectClass.

Dynamic objects have a limited lifetime, determined by a time-to-live (TTL) that can be refreshed by means
of a specific refresh extended operation. This operation allows to set the Client Refresh Period (CRP), namely
the period between refreshes that is required to preserve the dynamic object from expiration. The expiration
time is computed by adding the requested TTL to the current time. When dynamic objects reach the end of
their lifetime without being further refreshed, they are automatically deleted. There is no guarantee of
immediate deletion, so clients should not count on it.

12.5.2. Dynamic Directory Service Configuration

A usage of dynamic objects might be to implement dynamic meetings; in this case, all the participants to the
meeting are allowed to refresh the meeting object, but only the creator can delete it (otherwise it will be
deleted when the TTL expires).

If we add the overlay to an example database, specifying a Max TTL of 1 day, a min of 10 seconds, with a
default TTL of 1 hour. We'll also specify an interval of 120 (less than 60s might be too small) seconds

OpenLDAP Software 2.5 Administrator's Guide

109

https://www.rfc-editor.org/rfc/rfc2589.txt

between expiration checks and a tolerance of 5 second (lifetime of a dynamic object will be entryTtl +
tolerance).

 overlay dds
 dds-max-ttl 1d
 dds-min-ttl 10s
 dds-default-ttl 1h
 dds-interval 120s
 dds-tolerance 5s

and add an index:

 entryExpireTimestamp

Creating a meeting is as simple as adding the following:

 dn: cn=OpenLDAP Documentation Meeting,ou=Meetings,dc=example,dc=com
 objectClass: groupOfNames
 objectClass: dynamicObject
 cn: OpenLDAP Documentation Meeting
 member: uid=ghenry,ou=People,dc=example,dc=com
 member: uid=hyc,ou=People,dc=example,dc=com

12.5.2.1. Dynamic Directory Service ACLs

Allow users to start a meeting and to join it; restrict refresh to the member; restrict delete to the creator:

 access to attrs=userPassword
 by self write
 by * read

 access to dn.base="ou=Meetings,dc=example,dc=com"
 attrs=children
 by users write

 access to dn.onelevel="ou=Meetings,dc=example,dc=com"
 attrs=entry
 by dnattr=creatorsName write
 by * read

 access to dn.onelevel="ou=Meetings,dc=example,dc=com"
 attrs=participant
 by dnattr=creatorsName write
 by users selfwrite
 by * read

 access to dn.onelevel="ou=Meetings,dc=example,dc=com"
 attrs=entryTtl
 by dnattr=member manage
 by * read

In simple terms, the user who created the OpenLDAP Documentation Meeting can add new attendees, refresh
the meeting using (basically complete control):

 ldapexop -x -H ldap://ldaphost "refresh" "cn=OpenLDAP Documentation Meeting,ou=Meetings,dc=example,dc=com" "120" -D "uid=ghenry,ou=People,dc=example,dc=com" -W

OpenLDAP Software 2.5 Administrator's Guide

110

Any user can join the meeting, but not add another attendee, but they can refresh the meeting. The ACLs
above are quite straight forward to understand.

12.5.3. Further Information

slapo-dds(5)

12.6. Dynamic Groups

12.6.1. Overview

This overlay extends the Compare operation to detect members of a dynamic group. This overlay is now
deprecated as all of its functions are available using the Dynamic Lists overlay.

12.6.2. Dynamic Group Configuration

12.7. Dynamic Lists

12.7.1. Overview

This overlay allows expansion of dynamic groups and lists. Instead of having the group members or list
attributes hard coded, this overlay allows us to define an LDAP search whose results will make up the group
or list.

12.7.2. Dynamic List Configuration

This module can behave both as a dynamic list and dynamic group, depending on the configuration. The
syntax is as follows:

 overlay dynlist
 dynlist-attrset <group-oc> <URL-ad> [member-ad]

The parameters to the dynlist-attrset directive have the following meaning:

<group-oc>: specifies which object class triggers the subsequent LDAP search. Whenever an entry
with this object class is retrieved, the search is performed.

•

<URL-ad>: is the name of the attribute which holds the search URI. It has to be a subtype of
labeledURI. The attributes and values present in the search result are added to the entry unless
member-ad is used (see below).

•

member-ad: if present, changes the overlay behavior into a dynamic group. Instead of inserting the
results of the search in the entry, the distinguished name of the results are added as values of this
attribute.

•

Here is an example which will allow us to have an email alias which automatically expands to all user's emails
according to our LDAP filter:

In slapd.conf(5):

 overlay dynlist
 dynlist-attrset nisMailAlias labeledURI

OpenLDAP Software 2.5 Administrator's Guide

111

This means that whenever an entry which has the nisMailAlias object class is retrieved, the search specified
in the labeledURI attribute is performed.

Let's say we have this entry in our directory:

 cn=all,ou=aliases,dc=example,dc=com
 cn: all
 objectClass: nisMailAlias
 labeledURI: ldap:///ou=People,dc=example,dc=com?mail?one?(objectClass=inetOrgPerson)

If this entry is retrieved, the search specified in labeledURI will be performed and the results will be added to
the entry just as if they have always been there. In this case, the search filter selects all entries directly under
ou=People that have the inetOrgPerson object class and retrieves the mail attribute, if it exists.

This is what gets added to the entry when we have two users under ou=People that match the filter:

Figure X.Y: Dynamic List for all emails

The configuration for a dynamic group is similar. Let's see an example which would automatically populate
an allusers group with all the user accounts in the directory.

In slapd.conf(5):

 include /path/to/dyngroup.schema
 ...
 overlay dynlist
 dynlist-attrset groupOfURLs labeledURI member

Note: We must include the dyngroup.schema file that defines the groupOfURLs objectClass used in this
example.

Let's apply it to the following entry:

 cn=allusers,ou=group,dc=example,dc=com
 cn: all
 objectClass: groupOfURLs
 labeledURI: ldap:///ou=people,dc=example,dc=com??one?(objectClass=inetOrgPerson)

The behavior is similar to the dynamic list configuration we had before: whenever an entry with the
groupOfURLs object class is retrieved, the search specified in the labeledURI attribute is performed. But this
time, only the distinguished names of the results are added, and as values of the member attribute.

This is what we get:

OpenLDAP Software 2.5 Administrator's Guide

112

Figure X.Y: Dynamic Group for all users

Note that a side effect of this scheme of dynamic groups is that the members need to be specified as full DNs.
So, if you are planning in using this for posixGroups, be sure to use RFC2307bis and some attribute which
can hold distinguished names. The memberUid attribute used in the posixGroup object class can hold only
names, not DNs, and is therefore not suitable for dynamic groups.

12.7.3. Further Information

slapo-dynlist(5)

12.8. Reverse Group Membership Maintenance

12.8.1. Overview

In some scenarios, it may be desirable for a client to be able to determine which groups an entry is a member
of, without performing an additional search. Examples of this are applications using the DIT for access control
based on group authorization.

The memberof overlay updates an attribute (by default memberOf) whenever changes occur to the
membership attribute (by default member) of entries of the objectclass (by default groupOfNames)
configured to trigger updates.

Thus, it provides maintenance of the list of groups an entry is a member of, when usual maintenance of groups
is done by modifying the members on the group entry.

12.8.2. Member Of Configuration

The typical use of this overlay requires just enabling the overlay for a specific database. For example, with the
following minimal slapd.conf:

 include /usr/share/openldap/schema/core.schema
 include /usr/share/openldap/schema/cosine.schema

 authz-regexp "gidNumber=0\\\+uidNumber=0,cn=peercred,cn=external,cn=auth"
 "cn=Manager,dc=example,dc=com"
 database mdb
 suffix "dc=example,dc=com"
 rootdn "cn=Manager,dc=example,dc=com"
 rootpw secret
 directory /var/lib/ldap2.5
 checkpoint 256 5
 index objectClass eq
 index uid eq,sub

OpenLDAP Software 2.5 Administrator's Guide

113

 overlay memberof

adding the following ldif:

 cat memberof.ldif
 dn: dc=example,dc=com
 objectclass: domain
 dc: example

 dn: ou=Group,dc=example,dc=com
 objectclass: organizationalUnit
 ou: Group

 dn: ou=People,dc=example,dc=com
 objectclass: organizationalUnit
 ou: People

 dn: uid=test1,ou=People,dc=example,dc=com
 objectclass: account
 uid: test1

 dn: cn=testgroup,ou=Group,dc=example,dc=com
 objectclass: groupOfNames
 cn: testgroup
 member: uid=test1,ou=People,dc=example,dc=com

Results in the following output from a search on the test1 user:

 # ldapsearch -LL -Y EXTERNAL -H ldapi:/// "(uid=test1)" -b dc=example,dc=com memberOf
 SASL/EXTERNAL authentication started
 SASL username: gidNumber=0+uidNumber=0,cn=peercred,cn=external,cn=auth
 SASL SSF: 0
 version: 1

 dn: uid=test1,ou=People,dc=example,dc=com
 memberOf: cn=testgroup,ou=Group,dc=example,dc=com

Note that the memberOf attribute is an operational attribute, so it must be requested explicitly.

12.8.3. Further Information

slapo-memberof(5)

12.9. The Proxy Cache Engine

LDAP servers typically hold one or more subtrees of a DIT. Replica (or shadow) servers hold shadow copies
of entries held by one or more provider servers. Changes are propagated from the provider server to replica
servers using LDAP Sync replication. An LDAP cache is a special type of replica which holds entries
corresponding to search filters instead of subtrees.

12.9.1. Overview

The proxy cache extension of slapd is designed to improve the responsiveness of the ldap and meta backends.
It handles a search request (query) by first determining whether it is contained in any cached search filter.

OpenLDAP Software 2.5 Administrator's Guide

114

Contained requests are answered from the proxy cache's local database. Other requests are passed on to the
underlying ldap or meta backend and processed as usual.

E.g. (shoesize>=9) is contained in (shoesize>=8) and (sn=Richardson) is contained in (sn=Richards*)

Correct matching rules and syntaxes are used while comparing assertions for query containment. To simplify
the query containment problem, a list of cacheable "templates" (defined below) is specified at configuration
time. A query is cached or answered only if it belongs to one of these templates. The entries corresponding to
cached queries are stored in the proxy cache local database while its associated meta information (filter,
scope, base, attributes) is stored in main memory.

A template is a prototype for generating LDAP search requests. Templates are described by a prototype search
filter and a list of attributes which are required in queries generated from the template. The representation for
prototype filter is similar to RFC4515, except that the assertion values are missing. Examples of prototype
filters are: (sn=),(&(sn=)(givenname=)) which are instantiated by search filters (sn=Doe) and
(&(sn=Doe)(givenname=John)) respectively.

The cache replacement policy removes the least recently used (LRU) query and entries belonging to only that
query. Queries are allowed a maximum time to live (TTL) in the cache thus providing weak consistency. A
background task periodically checks the cache for expired queries and removes them.

The Proxy Cache paper (http://www.openldap.org/pub/kapurva/proxycaching.pdf) provides design and
implementation details.

12.9.2. Proxy Cache Configuration

The cache configuration specific directives described below must appear after a overlay pcache directive
within a "database meta" or "database ldap" section of the server's slapd.conf(5) file.

12.9.2.1. Setting cache parameters

 pcache <DB> <maxentries> <nattrsets> <entrylimit> <period>

This directive enables proxy caching and sets general cache parameters. The <DB> parameter specifies which
underlying database is to be used to hold cached entries. It should be set to mdb. The <maxentries> parameter
specifies the total number of entries which may be held in the cache. The <nattrsets> parameter specifies the
total number of attribute sets (as specified by the pcacheAttrset directive) that may be defined. The
<entrylimit> parameter specifies the maximum number of entries in a cacheable query. The <period>
specifies the consistency check period (in seconds). In each period, queries with expired TTLs are removed.

12.9.2.2. Defining attribute sets

 pcacheAttrset <index> <attrs...>

Used to associate a set of attributes to an index. Each attribute set is associated with an index number from 0
to <numattrsets>-1. These indices are used by the pcacheTemplate directive to define cacheable templates.

12.9.2.3. Specifying cacheable templates

 pcacheTemplate <prototype_string> <attrset_index> <TTL>

OpenLDAP Software 2.5 Administrator's Guide

115

https://www.rfc-editor.org/rfc/rfc4515.txt
http://www.openldap.org/pub/kapurva/proxycaching.pdf

Specifies a cacheable template and the "time to live" (in sec) <TTL> for queries belonging to the template. A
template is described by its prototype filter string and set of required attributes identified by <attrset_index>.

12.9.2.4. Example for slapd.conf

An example slapd.conf(5) database section for a caching server which proxies for the "dc=example,dc=com"
subtree held at server ldap.example.com.

 database ldap
 suffix "dc=example,dc=com"
 rootdn "dc=example,dc=com"
 uri ldap://ldap.example.com/
 overlay pcache
 pcache mdb 100000 1 1000 100
 pcacheAttrset 0 mail postaladdress telephonenumber
 pcacheTemplate (sn=) 0 3600
 pcacheTemplate (&(sn=)(givenName=)) 0 3600
 pcacheTemplate (&(departmentNumber=)(secretary=*)) 0 3600

 directory ./testrun/db.2.a
 maxsize 1073741824
 index objectClass eq
 index cn,sn,uid,mail pres,eq,sub

12.9.2.5. Example for slapd-config

The same example as a LDIF file for back-config for a caching server which proxies for the
"dc=example,dc=com" subtree held at server ldap.example.com.

 dn: olcDatabase={2}ldap,cn=config
 objectClass: olcDatabaseConfig
 objectClass: olcLDAPConfig
 olcDatabase: {2}ldap
 olcSuffix: dc=example,dc=com
 olcRootDN: dc=example,dc=com
 olcDbURI: "ldap://ldap.example.com"

 dn: olcOverlay={0}pcache,olcDatabase={2}ldap,cn=config
 objectClass: olcOverlayConfig
 objectClass: olcPcacheConfig
 olcOverlay: {0}pcache
 olcPcache: mdb 100000 1 1000 100
 olcPcacheAttrset: 0 mail postalAddress telephoneNumber
 olcPcacheTemplate: "(sn=)" 0 3600 0 0 0
 olcPcacheTemplate: "(&(sn=)(givenName=))" 0 3600 0 0 0
 olcPcacheTemplate: "(&(departmentNumber=)(secretary=))" 0 3600

 dn: olcDatabase={0}mdb,olcOverlay={0}pcache,olcDatabase={2}ldap,cn=config
 objectClass: olcMdbConfig
 objectClass: olcPcacheDatabase
 olcDatabase: {0}mdb
 olcDbDirectory: ./testrun/db.2.a
 olcDbMaxSize: 1073741824
 olcDbIndex: objectClass eq
 olcDbIndex: cn,sn,uid,mail pres,eq,sub

OpenLDAP Software 2.5 Administrator's Guide

116

12.9.2.5.1. Cacheable Queries

A LDAP search query is cacheable when its filter matches one of the templates as defined in the
"pcacheTemplate" statements and when it references only the attributes specified in the corresponding
attribute set. In the example above the attribute set number 0 defines that only the attributes: mail
postaladdress telephonenumber are cached for the following pcacheTemplates.

12.9.2.5.2. Examples:

 Filter: (&(sn=Richard*)(givenName=jack))
 Attrs: mail telephoneNumber

is cacheable, because it matches the template (&(sn=)(givenName=)) and its attributes are contained in
pcacheAttrset 0.

 Filter: (&(sn=Richard*)(telephoneNumber))
 Attrs: givenName

is not cacheable, because the filter does not match the template, nor is the attribute givenName stored in the
cache

 Filter: (|(sn=Richard*)(givenName=jack))
 Attrs: mail telephoneNumber

is not cacheable, because the filter does not match the template (logical OR "|" condition instead of logical
AND "&")

12.9.3. Further Information

slapo-pcache(5)

12.10. Password Policies

12.10.1. Overview

This overlay follows the specifications contained in the draft RFC titled
draft-behera-ldap-password-policy-09. While the draft itself is expired, it has been implemented in several
directory servers, including slapd. Nonetheless, it is important to note that it is a draft, meaning that it is
subject to change and is a work-in-progress.

The key abilities of the password policy overlay are as follows:

Enforce a minimum length for new passwords•
Make sure passwords are not changed too frequently•
Cause passwords to expire, provide warnings before they need to be changed, and allow a fixed
number of 'grace' logins to allow them to be changed after they have expired

•

Maintain a history of passwords to prevent password re-use•
Prevent password guessing by locking a password for a specified period of time after repeated
authentication failures

•

Force a password to be changed at the next authentication•
Set an administrative lock on an account•

OpenLDAP Software 2.5 Administrator's Guide

117

Support multiple password policies on a default or a per-object basis.•
Perform arbitrary quality checks using an external loadable module. This is a non-standard extension
of the draft RFC.

•

12.10.2. Password Policy Configuration

Instantiate the module in the database where it will be used, after adding the new ppolicy schema and loading
the ppolicy module. The following example shows the ppolicy module being added to the database that
handles the naming context "dc=example,dc=com". In this example we are also specifying the DN of a policy
object to use if none other is specified in a user's object.

 database mdb
 suffix "dc=example,dc=com"
 [...additional database configuration directives go here...]

 overlay ppolicy
 ppolicy_default "cn=default,ou=policies,dc=example,dc=com"

Now we need a container for the policy objects. In our example the password policy objects are going to be
placed in a section of the tree called "ou=policies,dc=example,dc=com":

 dn: ou=policies,dc=example,dc=com
 objectClass: organizationalUnit
 objectClass: top
 ou: policies

The default policy object that we are creating defines the following policies:

The user is allowed to change his own password. Note that the directory ACLs for this attribute can
also affect this ability (pwdAllowUserChange: TRUE).

•

The name of the password attribute is "userPassword" (pwdAttribute: userPassword). Note that this is
the only value that is accepted by OpenLDAP for this attribute.

•

The server will check the syntax of the password. If the server is unable to check the syntax (i.e., it
was hashed or otherwise encoded by the client) it will return an error refusing the password
(pwdCheckQuality: 2).

•

When a client includes the Password Policy Request control with a bind request, the server will
respond with a password expiration warning if it is going to expire in ten minutes or less
(pwdExpireWarning: 600). The warnings themselves are returned in a Password Policy Response
control.

•

When the password for a DN has expired, the server will allow five additional "grace" logins
(pwdGraceAuthNLimit: 5).

•

The server will maintain a history of the last five passwords that were used for a DN (pwdInHistory:
5).

•

The server will lock the account after the maximum number of failed bind attempts has been exceeded
(pwdLockout: TRUE).

•

When the server has locked an account, the server will keep it locked until an administrator unlocks it
(pwdLockoutDuration: 0)

•

The server will reset its failed bind count after a period of 30 seconds.•
Passwords will not expire (pwdMaxAge: 0).•
Passwords can be changed as often as desired (pwdMinAge: 0).•
Passwords must be at least 5 characters in length (pwdMinLength: 5).•

OpenLDAP Software 2.5 Administrator's Guide

118

The password does not need to be changed at the first bind or when the administrator has reset the
password (pwdMustChange: FALSE)

•

The current password does not need to be included with password change requests (pwdSafeModify:
FALSE)

•

The server will only allow five failed binds in a row for a particular DN (pwdMaxFailure: 5).•

The actual policy would be:

 dn: cn=default,ou=policies,dc=example,dc=com
 cn: default
 objectClass: pwdPolicy
 objectClass: namedPolicy
 objectClass: top
 pwdAllowUserChange: TRUE
 pwdAttribute: userPassword
 pwdCheckQuality: 2
 pwdExpireWarning: 600
 pwdFailureCountInterval: 30
 pwdGraceAuthNLimit: 5
 pwdInHistory: 5
 pwdLockout: TRUE
 pwdLockoutDuration: 0
 pwdMaxAge: 0
 pwdMaxFailure: 5
 pwdMinAge: 0
 pwdMinLength: 5
 pwdMustChange: FALSE
 pwdSafeModify: FALSE

You can create additional policy objects as needed.

The namedPolicy object class is present because the policy entry requires a structural object class.

There are two ways password policy can be applied to individual objects:

1. The pwdPolicySubentry in a user's object - If a user's object has a pwdPolicySubEntry attribute specifying
the DN of a policy object, then the policy defined by that object is applied.

2. Default password policy - If there is no specific pwdPolicySubentry set for an object, and the password
policy module was configured with the DN of a default policy object and if that object exists, then the policy
defined in that object is applied.

Please see slapo-ppolicy(5) for a complete explanation of its features.

A guiding philosophy for OpenLDAP and directory servers in general has been that they always hand back
exactly what they were given, without modification. For example, if the cn attribute of an object was set to
fOObaR, the server will return that exact string during a search. Values of attributes of a sensitive nature, such
as userPassword, are often hashed to conceal their values. Since the userPassword values are used internally
by the directory server to authenticate users, any hash algorithm that is applied to the value must be
compatible with the directory server. Historically this problem has been solved by making the LDAP client
application be able to hash the userPassword attribute value in a way that is compatible with the directory
server, but this solution has the obvious drawback of requiring tight coupling between the LDAP client and
server, and limits the choices of usable hashing algorithms to those that are accommodated by both. This is
clearly a sub-optimal solution.

OpenLDAP Software 2.5 Administrator's Guide

119

In 2001 RFC 3062 became a standard that specified an LDAP extended operation for cases like this. Extended
operations are not bound by the return-what-you-are-given philosophy and so are free to do things to attribute
values that the add and modify operations cannot. The change password extended operation accepts a
plaintext password and hashes it based on a specification that is contained in the server. This allows the server
to be in control of the hashing algorithm which, in turn, ensures that any hashes applied to userPassword
attribute values will not prevent users from being authenticated.

The password policy module's ppolicy_hash_cleartext flag addresses this problem by intercepting LDAP
modify operations that include the userPassword attribute and converting them to change password extended
operations so they can be hashed according to the specification contained in slapd's configuration. When this
flag is set, LDAP applications that modify the userPassword attribute can send the password in cleartext form
to the server using a standard LDAP modify command and the server will hash the value according to the
password-hash directive before storing it. It goes without saying that steps need to be taken to protect the
cleartext password in transit, such as using SSL, TLS, or some other link encryption method.

The following example shows the ppolicy module configured to hash cleartext passwords:

 database mdb
 suffix "dc=example,dc=com"
 [...additional database configuration directives go here...]

 overlay ppolicy
 ppolicy_default "cn=default,ou=policies,dc=example,dc=com"
 ppolicy_hash_cleartext

12.10.3. Further Information

slapo-ppolicy(5)

12.11. Referential Integrity

12.11.1. Overview

This overlay can be used with a backend database such as slapd-mdb(5) to maintain the cohesiveness of a
schema which utilizes reference attributes.

Whenever a modrdn or delete is performed, that is, when an entry's DN is renamed or an entry is removed, the
server will search the directory for references to this DN (in selected attributes: see below) and update them
accordingly. If it was a delete operation, the reference is deleted. If it was a modrdn operation, then the
reference is updated with the new DN.

For example, a very common administration task is to maintain group membership lists, specially when users
are removed from the directory. When an user account is deleted or renamed, all groups this user is a member
of have to be updated. LDAP administrators usually have scripts for that. But we can use the refint overlay
to automate this task. In this example, if the user is removed from the directory, the overlay will take care to
remove the user from all the groups he/she was a member of. No more scripting for this.

12.11.2. Referential Integrity Configuration

The configuration for this overlay is as follows:

OpenLDAP Software 2.5 Administrator's Guide

120

 overlay refint
 refint_attributes <attribute [attribute ...]>
 refint_nothing <string>

refint_attributes: this parameter specifies a space separated list of attributes which will have the
referential integrity maintained. When an entry is removed or has its DN renamed, the server will do
an internal search for any of the refint_attributes that point to the affected DN and update them
accordingly. IMPORTANT: the attributes listed here must have the distinguishedName syntax, that
is, hold DNs as values.

•

refint_nothing: some times, while trying to maintain the referential integrity, the server has to
remove the last attribute of its kind from an entry. This may be prohibited by the schema: for
example, the groupOfNames object class requires at least one member. In these cases, the server will
add the attribute value specified in refint_nothing to the entry.

•

To illustrate this overlay, we will use the group membership scenario.

In slapd.conf:

 overlay refint
 refint_attributes member
 refint_nothing "cn=admin,dc=example,dc=com"

This configuration tells the overlay to maintain the referential integrity of the member attribute. This attribute
is used in the groupOfNames object class which always needs a member, so we add the refint_nothing
directive to fill in the group with a standard member should all the members vanish.

If we have the following group membership, the refint overlay will automatically remove john from the group
if his entry is removed from the directory:

Figure X.Y: Maintaining referential integrity in groups

Notice that if we rename (modrdn) the john entry to, say, jsmith, the refint overlay will also rename the
reference in the member attribute, so the group membership stays correct.

If we removed all users from the directory who are a member of this group, then the end result would be a
single member in the group: cn=admin,dc=example,dc=com. This is the refint_nothing parameter kicking
into action so that the schema is not violated.

The rootdn must be set for the database as refint runs as the rootdn to gain access to make its updates. The
rootpw does not need to be set.

OpenLDAP Software 2.5 Administrator's Guide

121

12.11.3. Further Information

slapo-refint(5)

12.12. Return Code

12.12.1. Overview

This overlay is useful to test the behavior of clients when server-generated erroneous and/or unusual
responses occur, for example; error codes, referrals, excessive response times and so on.

This would be classed as a debugging tool whilst developing client software or additional Overlays.

For detailed information, please see the slapo-retcode(5) man page.

12.12.2. Return Code Configuration

The retcode overlay utilizes the "return code" schema described in the man page. This schema is specifically
designed for use with this overlay and is not intended to be used otherwise.

Note: The necessary schema is loaded automatically by the overlay.

An example configuration might be:

 overlay retcode
 retcode-parent "ou=RetCodes,dc=example,dc=com"
 include ./retcode.conf

 retcode-item "cn=Unsolicited" 0x00 unsolicited="0"
 retcode-item "cn=Notice of Disconnect" 0x00 unsolicited="1.3.6.1.4.1.1466.20036"
 retcode-item "cn=Pre-disconnect" 0x34 flags="pre-disconnect"
 retcode-item "cn=Post-disconnect" 0x34 flags="post-disconnect"

Note: retcode.conf can be found in the openldap source at: tests/data/retcode.conf

An excerpt of a retcode.conf would be something like:

 retcode-item "cn=success" 0x00

 retcode-item "cn=success w/ delay" 0x00 sleeptime=2

 retcode-item "cn=operationsError" 0x01
 retcode-item "cn=protocolError" 0x02
 retcode-item "cn=timeLimitExceeded" 0x03 op=search
 retcode-item "cn=sizeLimitExceeded" 0x04 op=search
 retcode-item "cn=compareFalse" 0x05 op=compare
 retcode-item "cn=compareTrue" 0x06 op=compare
 retcode-item "cn=authMethodNotSupported" 0x07
 retcode-item "cn=strongAuthNotSupported" 0x07 text="same as authMethodNotSupported"
 retcode-item "cn=strongAuthRequired" 0x08
 retcode-item "cn=strongerAuthRequired" 0x08 text="same as strongAuthRequired"

Please see tests/data/retcode.conf for a complete retcode.conf

OpenLDAP Software 2.5 Administrator's Guide

122

12.12.3. Further Information

slapo-retcode(5)

12.13. Rewrite/Remap

12.13.1. Overview

It performs basic DN/data rewrite and objectClass/attributeType mapping. Its usage is mostly intended to
provide virtual views of existing data either remotely, in conjunction with the proxy backend described in
slapd-ldap(5), or locally, in conjunction with the relay backend described in slapd-relay(5).

This overlay is extremely configurable and advanced, therefore recommended reading is the slapo-rwm(5)
man page.

12.13.2. Rewrite/Remap Configuration

12.13.3. Further Information

slapo-rwm(5)

12.14. Sync Provider

12.14.1. Overview

This overlay implements the provider-side support for the LDAP Content Synchronization (RFC4533) as well
as syncrepl replication support, including persistent search functionality.

12.14.2. Sync Provider Configuration

There is very little configuration needed for this overlay, in fact for many situations merely loading the
overlay will suffice.

However, because the overlay creates a contextCSN attribute in the root entry of the database which is
updated for every write operation performed against the database and only updated in memory, it is
recommended to configure a checkpoint so that the contextCSN is written into the underlying database to
minimize recovery time after an unclean shutdown:

 overlay syncprov
 syncprov-checkpoint 100 10

For every 100 operations or 10 minutes, which ever is sooner, the contextCSN will be checkpointed.

The four configuration directives available are syncprov-checkpoint, syncprov-sessionlog,
syncprov-nopresent and syncprov-reloadhint which are covered in the man page discussing various other
scenarios where this overlay can be used.

OpenLDAP Software 2.5 Administrator's Guide

123

https://www.rfc-editor.org/rfc/rfc4533.txt

12.14.3. Further Information

The slapo-syncprov(5) man page and the Configuring the different replication types section

12.15. Translucent Proxy

12.15.1. Overview

This overlay can be used with a backend database such as slapd-mdb(5) to create a "translucent proxy".

Entries retrieved from a remote LDAP server may have some or all attributes overridden, or new attributes
added, by entries in the local database before being presented to the client.

A search operation is first populated with entries from the remote LDAP server, the attributes of which are
then overridden with any attributes defined in the local database. Local overrides may be populated with the
add, modify, and modrdn operations, the use of which is restricted to the root user of the translucent local
database.

A compare operation will perform a comparison with attributes defined in the local database record (if any)
before any comparison is made with data in the remote database.

12.15.2. Translucent Proxy Configuration

There are various options available with this overlay, but for this example we will demonstrate adding new
attributes to a remote entry and also searching against these newly added local attributes. For more
information about overriding remote entries and search configuration, please see slapo-translucent(5)

Note: The Translucent Proxy overlay will disable schema checking in the local database, so that an entry
consisting of overlay attributes need not adhere to the complete schema.

First we configure the overlay in the normal manner:

 include /usr/local/etc/openldap/schema/core.schema
 include /usr/local/etc/openldap/schema/cosine.schema
 include /usr/local/etc/openldap/schema/nis.schema
 include /usr/local/etc/openldap/schema/inetorgperson.schema

 pidfile ./slapd.pid
 argsfile ./slapd.args

 database mdb
 suffix "dc=suretecsystems,dc=com"
 rootdn "cn=trans,dc=suretecsystems,dc=com"
 rootpw secret
 directory ./openldap-data

 index objectClass eq

 overlay translucent
 translucent_local carLicense

 uri ldap://192.168.X.X:389
 lastmod off

OpenLDAP Software 2.5 Administrator's Guide

124

 acl-bind binddn="cn=admin,dc=suretecsystems,dc=com" credentials="blahblah"

You will notice the overlay directive and a directive to say what attribute we want to be able to search against
in the local database. We must also load the ldap backend which will connect to the remote directory server.

Now we take an example LDAP group:

 # itsupport, Groups, suretecsystems.com
 dn: cn=itsupport,ou=Groups,dc=suretecsystems,dc=com
 objectClass: posixGroup
 objectClass: sambaGroupMapping
 cn: itsupport
 gidNumber: 1000
 sambaSID: S-1-5-21-XXX
 sambaGroupType: 2
 displayName: itsupport
 memberUid: ghenry
 memberUid: joebloggs

and create an LDIF file we can use to add our data to the local database, using some pretty strange choices of
new attributes for demonstration purposes:

 [ghenry@suretec test_configs]$ cat test-translucent-add.ldif
 dn: cn=itsupport,ou=Groups,dc=suretecsystems,dc=com
 businessCategory: frontend-override
 carLicense: LIVID
 employeeType: special
 departmentNumber: 9999999
 roomNumber: 41L-535

Searching against the proxy gives:

 [ghenry@suretec test_configs]$ ldapsearch -x -H ldap://127.0.0.1:9001 "(cn=itsupport)"
 # itsupport, Groups, OxObjects, suretecsystems.com
 dn: cn=itsupport,ou=Groups,ou=OxObjects,dc=suretecsystems,dc=com
 objectClass: posixGroup
 objectClass: sambaGroupMapping
 cn: itsupport
 gidNumber: 1003
 SAMBASID: S-1-5-21-XXX
 SAMBAGROUPTYPE: 2
 displayName: itsupport
 memberUid: ghenry
 memberUid: joebloggs
 roomNumber: 41L-535
 departmentNumber: 9999999
 employeeType: special
 carLicense: LIVID
 businessCategory: frontend-override

Here we can see that the 5 new attributes are added to the remote entry before being returned to the our client.

Because we have configured a local attribute to search against:

 overlay translucent
 translucent_local carLicense

OpenLDAP Software 2.5 Administrator's Guide

125

we can also search for that to return the completely fabricated entry:

 ldapsearch -x -H ldap://127.0.0.1:9001 (carLicense=LIVID)

This is an extremely useful feature because you can then extend a remote directory server locally and also
search against the local entries.

Note: Because the translucent overlay does not perform any DN rewrites, the local and remote database
instances must have the same suffix. Other configurations will probably fail with No Such Object and other
errors

12.15.3. Further Information

slapo-translucent(5)

12.16. Attribute Uniqueness

12.16.1. Overview

This overlay can be used with a backend database such as slapd-mdb(5) to enforce the uniqueness of some or
all attributes within a subtree.

12.16.2. Attribute Uniqueness Configuration

This overlay is only effective on new data from the point the overlay is enabled. To check uniqueness for
existing data, you can export and import your data again via the LDAP Add operation, which will not be
suitable for large amounts of data, unlike slapcat.

For the following example, if uniqueness were enforced for the mail attribute, the subtree would be searched
for any other records which also have a mail attribute containing the same value presented with an add,
modify or modrdn operation which are unique within the configured scope. If any are found, the request is
rejected.

Note: If no attributes are specified, for example ldap:///??sub?, then the URI applies to all non-operational
attributes. However, the keyword ignore can be specified to exclude certain non-operational attributes.

To search at the base dn of the current backend database ensuring uniqueness of the mail attribute, we simply
add the following configuration:

 overlay unique
 unique_uri ldap:///?mail?sub?

For an existing entry of:

 dn: cn=gavin,dc=suretecsystems,dc=com
 objectClass: top
 objectClass: inetorgperson
 cn: gavin
 sn: henry
 mail: ghenry@suretecsystems.com

OpenLDAP Software 2.5 Administrator's Guide

126

and we then try to add a new entry of:

 dn: cn=robert,dc=suretecsystems,dc=com
 objectClass: top
 objectClass: inetorgperson
 cn: robert
 sn: jones
 mail: ghenry@suretecsystems.com

would result in an error like so:

 adding new entry "cn=robert,dc=example,dc=com"
 ldap_add: Constraint violation (19)
 additional info: some attributes not unique

The overlay can have multiple URIs specified within a domain, allowing complex selections of objects and
also have multiple unique_uri statements or olcUniqueURI attributes which will create independent
domains.

For more information and details about the strict and ignore keywords, please see the slapo-unique(5) man
page.

12.16.3. Further Information

slapo-unique(5)

12.17. Value Sorting

12.17.1. Overview

The Value Sorting overlay can be used with a backend database to sort the values of specific multi-valued
attributes within a subtree. The sorting occurs whenever the attributes are returned in a search response.

12.17.2. Value Sorting Configuration

Sorting can be specified in ascending or descending order, using either numeric or alphanumeric sort methods.
Additionally, a "weighted" sort can be specified, which uses a numeric weight prepended to the attribute
values.

The weighted sort is always performed in ascending order, but may be combined with the other methods for
values that all have equal weights. The weight is specified by prepending an integer weight {<weight>} in
front of each value of the attribute for which weighted sorting is desired. This weighting factor is stripped off
and never returned in search results.

Here are a few examples:

 loglevel sync stats

 database mdb
 suffix "dc=suretecsystems,dc=com"
 directory /usr/local/var/openldap-data

OpenLDAP Software 2.5 Administrator's Guide

127

 overlay valsort
 valsort-attr memberUid ou=Groups,dc=suretecsystems,dc=com alpha-ascend

For example, ascend:

 # sharedemail, Groups, suretecsystems.com
 dn: cn=sharedemail,ou=Groups,dc=suretecsystems,dc=com
 objectClass: posixGroup
 objectClass: top
 cn: sharedemail
 gidNumber: 517
 memberUid: admin
 memberUid: dovecot
 memberUid: laura
 memberUid: suretec

For weighted, we change our data to:

 # sharedemail, Groups, suretecsystems.com
 dn: cn=sharedemail,ou=Groups,dc=suretecsystems,dc=com
 objectClass: posixGroup
 objectClass: top
 cn: sharedemail
 gidNumber: 517
 memberUid: {4}admin
 memberUid: {2}dovecot
 memberUid: {1}laura
 memberUid: {3}suretec

and change the config to:

 overlay valsort
 valsort-attr memberUid ou=Groups,dc=suretecsystems,dc=com weighted

Searching now results in:

 # sharedemail, Groups, OxObjects, suretecsystems.com
 dn: cn=sharedemail,ou=Groups,ou=OxObjects,dc=suretecsystems,dc=com
 objectClass: posixGroup
 objectClass: top
 cn: sharedemail
 gidNumber: 517
 memberUid: laura
 memberUid: dovecot
 memberUid: suretec
 memberUid: admin

12.17.3. Further Information

slapo-valsort(5)

12.18. Overlay Stacking

OpenLDAP Software 2.5 Administrator's Guide

128

12.18.1. Overview

Overlays can be stacked, which means that more than one overlay can be instantiated for each database, or for
the frontend. As a consequence, each overlays function is called, if defined, when overlay execution is
invoked. Multiple overlays are executed in reverse order (as a stack) with respect to their definition in
slapd.conf (5), or with respect to their ordering in the config database, as documented in slapd-config (5).

12.18.2. Example Scenarios

12.18.2.1. Samba

OpenLDAP Software 2.5 Administrator's Guide

129

OpenLDAP Software 2.5 Administrator's Guide

130

13. Schema Specification
This chapter describes how to extend the user schema used by slapd(8). The chapter assumes the reader is
familiar with the LDAP/X.500 information model.

The first section, Distributed Schema Files details optional schema definitions provided in the distribution and
where to obtain other definitions. The second section, Extending Schema, details how to define new schema
items.

This chapter does not discuss how to extend system schema used by slapd(8) as this requires source code
modification. System schema includes all operational attribute types or any object class which allows or
requires an operational attribute (directly or indirectly).

13.1. Distributed Schema Files

OpenLDAP Software is distributed with a set of schema specifications for your use. Each set is defined in a
file suitable for inclusion (using the include directive) in your slapd.conf(5) file. These schema files are
normally installed in the /usr/local/etc/openldap/schema directory.

Table 8.1: Provided Schema Specifications

File Description
core.schema OpenLDAP core (required)
cosine.schema Cosine and Internet X.500 (useful)
inetorgperson.schema InetOrgPerson (useful)
misc.schema Assorted (experimental)
nis.schema Network Information Services (FYI)
openldap.schema OpenLDAP Project (experimental)

To use any of these schema files, you only need to include the desired file in the global definitions portion of
your slapd.conf(5) file. For example:

 # include schema
 include /usr/local/etc/openldap/schema/core.schema
 include /usr/local/etc/openldap/schema/cosine.schema
 include /usr/local/etc/openldap/schema/inetorgperson.schema

Additional files may be available. Please consult the OpenLDAP FAQ (http://www.openldap.org/faq/).

Note: You should not modify any of the schema items defined in provided files.

13.2. Extending Schema

Schema used by slapd(8) may be extended to support additional syntaxes, matching rules, attribute types, and
object classes. This chapter details how to add user application attribute types and object classes using the
syntaxes and matching rules already supported by slapd. slapd can also be extended to support additional
syntaxes, matching rules and system schema, but this requires some programming and hence is not discussed
here.

131

http://www.openldap.org/faq/

There are five steps to defining new schema:

obtain Object Identifier1.
choose a name prefix2.
create local schema file3.
define custom attribute types (if necessary)4.
define custom object classes5.

13.2.1. Object Identifiers

Each schema element is identified by a globally unique Object Identifier (OID). OIDs are also used to identify
other objects. They are commonly found in protocols described by ASN.1. In particular, they are heavily used
by the Simple Network Management Protocol (SNMP). As OIDs are hierarchical, your organization can
obtain one OID and branch it as needed. For example, if your organization were assigned OID 1.1, you could
branch the tree as follows:

Table 8.2: Example OID hierarchy

OID Assignment
1.1 Organization's OID
1.1.1 SNMP Elements
1.1.2 LDAP Elements
1.1.2.1 AttributeTypes
1.1.2.1.1 x-my-Attribute
1.1.2.2 ObjectClasses
1.1.2.2.1 x-my-ObjectClass

You are, of course, free to design a hierarchy suitable to your organizational needs under your organization's
OID. No matter what hierarchy you choose, you should maintain a registry of assignments you make. This can
be a simple flat file or something more sophisticated such as the OpenLDAP OID Registry
(http://www.openldap.org/faq/index.cgi?file=197).

For more information about Object Identifiers (and a listing service) see http://www.alvestrand.no/objectid/.

Under no circumstances should you hijack OID namespace!

To obtain a registered OID at no cost, apply for a OID under the Internet Assigned Numbers Authority
(ORG:IANA) maintained Private Enterprise arc. Any private enterprise (organization) may request a Private
Enterprise Number (PEN) to be assigned under this arc. Just fill out the IANA form at
http://pen.iana.org/pen/PenApplication.page and your official PEN will be sent to you usually within a few
days. Your base OID will be something like 1.3.6.1.4.1.X where X is an integer.

Note: PENs obtained using this form may be used for any purpose including identifying LDAP schema
elements.

Alternatively, OID name space may be available from a national authority (e.g., ANSI, BSI).

OpenLDAP Software 2.5 Administrator's Guide

132

http://www.openldap.org/faq/index.cgi?file=197
http://www.alvestrand.no/objectid/
https://www.iana.org/
http://pen.iana.org/pen/PenApplication.page
https://www.ansi.org/
https://www.bsigroup.com/en-GB/

13.2.2. Naming Elements

In addition to assigning a unique object identifier to each schema element, you should provide at least one
textual name for each element. Names should be registered with the IANA or prefixed with "x-" to place in
the "private use" name space.

The name should be both descriptive and not likely to clash with names of other schema elements. In
particular, any name you choose should not clash with present or future Standard Track names (this is assured
if you registered names or use names beginning with "x-").

It is noted that you can obtain your own registered name prefix so as to avoid having to register your names
individually. See RFC4520 for details.

In the examples below, we have used a short prefix 'x-my-'. Such a short prefix would only be suitable for a
very large, global organization. In general, we recommend something like 'x-de-Firm-' (German company)
or 'x-com-Example' (elements associated with organization associated with example.com).

13.2.3. Local schema file

The objectclass and attributeTypes configuration file directives can be used to define schema rules on
entries in the directory. It is customary to create a file to contain definitions of your custom schema items. We
recommend you create a file local.schema in /usr/local/etc/openldap/schema/local.schema and then
include this file in your slapd.conf(5) file immediately after other schema include directives.

 # include schema
 include /usr/local/etc/openldap/schema/core.schema
 include /usr/local/etc/openldap/schema/cosine.schema
 include /usr/local/etc/openldap/schema/inetorgperson.schema
 # include local schema
 include /usr/local/etc/openldap/schema/local.schema

13.2.4. Attribute Type Specification

The attributetype directive is used to define a new attribute type. The directive uses the same Attribute Type
Description (as defined in RFC4512) used by the attributeTypes attribute found in the subschema subentry,
e.g.:

 attributetype <RFC4512 Attribute Type Description>

where Attribute Type Description is defined by the following ABNF:

 AttributeTypeDescription = "(" whsp
 numericoid whsp ; AttributeType identifier
 ["NAME" qdescrs] ; name used in AttributeType
 ["DESC" qdstring] ; description
 ["OBSOLETE" whsp]
 ["SUP" woid] ; derived from this other
 ; AttributeType
 ["EQUALITY" woid ; Matching Rule name
 ["ORDERING" woid ; Matching Rule name
 ["SUBSTR" woid] ; Matching Rule name
 ["SYNTAX" whsp noidlen whsp] ; Syntax OID
 ["SINGLE-VALUE" whsp] ; default multi-valued
 ["COLLECTIVE" whsp] ; default not collective

OpenLDAP Software 2.5 Administrator's Guide

133

https://www.iana.org/
https://www.rfc-editor.org/rfc/rfc4520.txt
https://www.rfc-editor.org/rfc/rfc4512.txt
https://www.rfc-editor.org/rfc/rfc4512.txt

 ["NO-USER-MODIFICATION" whsp]; default user modifiable
 ["USAGE" whsp AttributeUsage]; default userApplications
 whsp ")"

 AttributeUsage =
 "userApplications" /
 "directoryOperation" /
 "distributedOperation" / ; DSA-shared
 "dSAOperation" ; DSA-specific, value depends on server

where whsp is a space (' '), numericoid is a globally unique OID in dotted-decimal form (e.g. 1.1.0), qdescrs
is one or more names, woid is either the name or OID optionally followed by a length specifier (e.g {10}).

For example, the attribute types name and cn are defined in core.schema as:

 attributeType (2.5.4.41 NAME 'name'
 DESC 'name(s) associated with the object'
 EQUALITY caseIgnoreMatch
 SUBSTR caseIgnoreSubstringsMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{32768})
 attributeType (2.5.4.3 NAME ('cn' 'commonName')
 DESC 'common name(s) associated with the object'
 SUP name)

Notice that each defines the attribute's OID, provides a short name, and a brief description. Each name is an
alias for the OID. slapd(8) returns the first listed name when returning results.

The first attribute, name, holds values of directoryString (UTF-8 encoded Unicode) syntax. The syntax is
specified by OID (1.3.6.1.4.1.1466.115.121.1.15 identifies the directoryString syntax). A length
recommendation of 32768 is specified. Servers should support values of this length, but may support longer
values. The field does NOT specify a size constraint, so is ignored on servers (such as slapd) which don't
impose such size limits. In addition, the equality and substring matching uses case ignore rules. Below are
tables listing commonly used syntax and matching rules (slapd(8) supports these and many more).

Table 8.3: Commonly Used Syntaxes

Name OID Description
boolean 1.3.6.1.4.1.1466.115.121.1.7 boolean value
directoryString 1.3.6.1.4.1.1466.115.121.1.15 Unicode (UTF-8) string
distinguishedName 1.3.6.1.4.1.1466.115.121.1.12 LDAP DN
integer 1.3.6.1.4.1.1466.115.121.1.27 integer
numericString 1.3.6.1.4.1.1466.115.121.1.36 numeric string
OID 1.3.6.1.4.1.1466.115.121.1.38 object identifier
octetString 1.3.6.1.4.1.1466.115.121.1.40 arbitrary octets

Table 8.4: Commonly Used Matching Rules

Name Type Description
booleanMatch equality boolean

OpenLDAP Software 2.5 Administrator's Guide

134

caseIgnoreMatch equality case insensitive, space insensitive
caseIgnoreOrderingMatch ordering case insensitive, space insensitive
caseIgnoreSubstringsMatch substrings case insensitive, space insensitive
caseExactMatch equality case sensitive, space insensitive
caseExactOrderingMatch ordering case sensitive, space insensitive
caseExactSubstringsMatch substrings case sensitive, space insensitive
distinguishedNameMatch equality distinguished name
integerMatch equality integer
integerOrderingMatch ordering integer
numericStringMatch equality numerical
numericStringOrderingMatch ordering numerical
numericStringSubstringsMatch substrings numerical
octetStringMatch equality octet string
octetStringOrderingMatch ordering octet string
octetStringSubstringsMatch ordering octet st ring
objectIdentiferMatch equality object identifier

The second attribute, cn, is a subtype of name hence it inherits the syntax, matching rules, and usage of name.
commonName is an alternative name.

Neither attribute is restricted to a single value. Both are meant for usage by user applications. Neither is
obsolete nor collective.

The following subsections provide a couple of examples.

13.2.4.1. x-my-UniqueName

Many organizations maintain a single unique name for each user. Though one could use displayName
(RFC2798), this attribute is really meant to be controlled by the user, not the organization. We could just copy
the definition of displayName from inetorgperson.schema and replace the OID, name, and description, e.g:

 attributetype (1.1.2.1.1 NAME 'x-my-UniqueName'
 DESC 'unique name with my organization'
 EQUALITY caseIgnoreMatch
 SUBSTR caseIgnoreSubstringsMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
 SINGLE-VALUE)

However, if we want this name to be used in name assertions, e.g. (name=*Jane*), the attribute could
alternatively be defined as a subtype of name, e.g.:

 attributetype (1.1.2.1.1 NAME 'x-my-UniqueName'
 DESC 'unique name with my organization'
 SUP name)

13.2.4.2. x-my-Photo

Many organizations maintain a photo of each each user. A x-my-Photo attribute type could be defined to hold
a photo. Of course, one could use just use jpegPhoto (RFC2798) (or a subtype) to hold the photo. However,
you can only do this if the photo is in JPEG File Interchange Format. Alternatively, an attribute type which

OpenLDAP Software 2.5 Administrator's Guide

135

https://www.rfc-editor.org/rfc/rfc2798.txt
https://www.rfc-editor.org/rfc/rfc2798.txt

uses the Octet String syntax can be defined, e.g.:

 attributetype (1.1.2.1.2 NAME 'x-my-Photo'
 DESC 'a photo (application defined format)'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.40
 SINGLE-VALUE)

In this case, the syntax doesn't specify the format of the photo. It's assumed (maybe incorrectly) that all
applications accessing this attribute agree on the handling of values.

If you wanted to support multiple photo formats, you could define a separate attribute type for each format,
prefix the photo with some typing information, or describe the value using ASN.1 and use the ;binary
transfer option.

Another alternative is for the attribute to hold a URI pointing to the photo. You can model such an attribute
after labeledURI (RFC2079) or simply create a subtype, e.g.:

 attributetype (1.1.2.1.3 NAME 'x-my-PhotoURI'
 DESC 'URI and optional label referring to a photo'
 SUP labeledURI)

13.2.5. Object Class Specification

The objectclasses directive is used to define a new object class. The directive uses the same Object Class
Description (as defined in RFC4512) used by the objectClasses attribute found in the subschema subentry,
e.g.:

 objectclass <RFC4512 Object Class Description>

where Object Class Description is defined by the following ABNF:

 ObjectClassDescription = "(" whsp
 numericoid whsp ; ObjectClass identifier
 ["NAME" qdescrs]
 ["DESC" qdstring]
 ["OBSOLETE" whsp]
 ["SUP" oids] ; Superior ObjectClasses
 [("ABSTRACT" / "STRUCTURAL" / "AUXILIARY") whsp]
 ; default structural
 ["MUST" oids] ; AttributeTypes
 ["MAY" oids] ; AttributeTypes
 whsp ")"

where whsp is a space (' '), numericoid is a globally unique OID in dotted-decimal form (e.g. 1.1.0), qdescrs
is one or more names, and oids is one or more names and/or OIDs.

13.2.5.1. x-my-PhotoObject

To define an auxiliary object class which allows x-my-Photo to be added to any existing entry.

 objectclass (1.1.2.2.1 NAME 'x-my-PhotoObject'
 DESC 'mixin x-my-Photo'
 AUXILIARY
 MAY x-my-Photo)

OpenLDAP Software 2.5 Administrator's Guide

136

https://www.rfc-editor.org/rfc/rfc2079.txt
https://www.rfc-editor.org/rfc/rfc4512.txt
https://www.rfc-editor.org/rfc/rfc4512.txt

13.2.5.2. x-my-Person

If your organization would like have a private structural object class to instantiate users, you can subclass one
of the existing person classes, such as inetOrgPerson (RFC2798), and add any additional attributes which
you desire.

 objectclass (1.1.2.2.2 NAME 'x-my-Person'
 DESC 'my person'
 SUP inetOrgPerson
 MUST (x-my-UniqueName $ givenName)
 MAY x-my-Photo)

The object class inherits the required/allowed attribute types of inetOrgPerson but requires
x-my-UniqueName and givenName and allows x-my-Photo.

13.2.6. OID Macros

To ease the management and use of OIDs, slapd(8) supports Object Identifier macros. The
objectIdentifier directive is used to equate a macro (name) with a OID. The OID may possibly be derived
from a previously defined OID macro. The slapd.conf(5) syntax is:

 objectIdentifier <name> { <oid> | <name>[:<suffix>] }

The following demonstrates definition of a set of OID macros and their use in defining schema elements:

 objectIdentifier myOID 1.1
 objectIdentifier mySNMP myOID:1
 objectIdentifier myLDAP myOID:2
 objectIdentifier myAttributeType myLDAP:1
 objectIdentifier myObjectClass myLDAP:2
 attributetype (myAttributeType:3 NAME 'x-my-PhotoURI'
 DESC 'URI and optional label referring to a photo'
 SUP labeledURI)
 objectclass (myObjectClass:1 NAME 'x-my-PhotoObject'
 DESC 'mixin x-my-Photo'
 AUXILIARY
 MAY x-my-Photo)

OpenLDAP Software 2.5 Administrator's Guide

137

https://www.rfc-editor.org/rfc/rfc2798.txt

OpenLDAP Software 2.5 Administrator's Guide

138

14. Security Considerations
OpenLDAP Software is designed to run in a wide variety of computing environments from tightly-controlled
closed networks to the global Internet. Hence, OpenLDAP Software supports many different security
mechanisms. This chapter describes these mechanisms and discusses security considerations for using
OpenLDAP Software.

14.1. Network Security

14.1.1. Selective Listening

By default, slapd(8) will listen on both the IPv4 and IPv6 "any" addresses. It is often desirable to have slapd
listen on select address/port pairs. For example, listening only on the IPv4 address 127.0.0.1 will disallow
remote access to the directory server. E.g.:

 slapd -h ldap://127.0.0.1

While the server can be configured to listen on a particular interface address, this doesn't necessarily restrict
access to the server to only those networks accessible via that interface. To selective restrict remote access, it
is recommend that an IP Firewall be used to restrict access.

See Command-line Options and slapd(8) for more information.

14.1.2. IP Firewall

IP firewall capabilities of the server system can be used to restrict access based upon the client's IP address
and/or network interface used to communicate with the client.

Generally, slapd(8) listens on port 389/tcp for ldap:// sessions and port 636/tcp for ldaps://) sessions. slapd(8)
may be configured to listen on other ports.

As specifics of how to configure IP firewall are dependent on the particular kind of IP firewall used, no
examples are provided here. See the document associated with your IP firewall.

14.1.3. TCP Wrappers

slapd(8) supports TCP Wrappers. TCP Wrappers provide a rule-based access control system for controlling
TCP/IP access to the server. For example, the host_options(5) rule:

 slapd: 10.0.0.0/255.0.0.0 127.0.0.1 : ALLOW
 slapd: ALL : DENY

allows only incoming connections from the private network 10.0.0.0 and localhost (127.0.0.1) to access
the directory service.

Note: IP addresses are used as slapd(8) is not normally configured to perform reverse lookups.

It is noted that TCP wrappers require the connection to be accepted. As significant processing is required just
to deny a connection, it is generally advised that IP firewall protection be used instead of TCP wrappers.

139

See hosts_access(5) for more information on TCP wrapper rules.

14.2. Data Integrity and Confidentiality Protection

Transport Layer Security (TLS) can be used to provide data integrity and confidentiality protection.
OpenLDAP supports negotiation of TLS (SSL) via both StartTLS and ldaps://. See the Using TLS chapter for
more information. StartTLS is the standard track mechanism.

A number of Simple Authentication and Security Layer (SASL) mechanisms, such as DIGEST-MD5 and
GSSAPI, also provide data integrity and confidentiality protection. See the Using SASL chapter for more
information.

14.2.1. Security Strength Factors

The server uses Security Strength Factors (SSF) to indicate the relative strength of protection. A SSF of zero
(0) indicates no protections are in place. A SSF of one (1) indicates integrity protection are in place. A SSF
greater than one (>1) roughly correlates to the effective encryption key length. For example, DES is 56, 3DES
is 112, and AES 128, 192, or 256.

A number of administrative controls rely on SSFs associated with TLS and SASL protection in place on an
LDAP session.

security controls disallow operations when appropriate protections are not in place. For example:

 security ssf=1 update_ssf=112

requires integrity protection for all operations and encryption protection, 3DES equivalent, for update
operations (e.g. add, delete, modify, etc.). See slapd.conf(5) for details.

For fine-grained control, SSFs may be used in access controls. See the Access Control section for more
information.

14.3. Authentication Methods

14.3.1. "simple" method

The LDAP "simple" method has three modes of operation:

anonymous,•
unauthenticated, and•
user/password authenticated.•

Anonymous access is requested by providing no name and no password to the "simple" bind operation.
Unauthenticated access is requested by providing a name but no password. Authenticated access is requested
by providing a valid name and password.

An anonymous bind results in an anonymous authorization association. Anonymous bind mechanism is
enabled by default, but can be disabled by specifying "disallow bind_anon" in slapd.conf(5).

OpenLDAP Software 2.5 Administrator's Guide

140

Note: Disabling the anonymous bind mechanism does not prevent anonymous access to the directory. To
require authentication to access the directory, one should instead specify "require authc".

An unauthenticated bind also results in an anonymous authorization association. Unauthenticated bind
mechanism is disabled by default, but can be enabled by specifying "allow bind_anon_cred" in
slapd.conf(5). As a number of LDAP applications mistakenly generate unauthenticated bind request when
authenticated access was intended (that is, they do not ensure a password was provided), this mechanism
should generally remain disabled.

A successful user/password authenticated bind results in a user authorization identity, the provided name,
being associated with the session. User/password authenticated bind is enabled by default. However, as this
mechanism itself offers no eavesdropping protection (e.g., the password is set in the clear), it is recommended
that it be used only in tightly controlled systems or when the LDAP session is protected by other means (e.g.,
TLS, IPsec). Where the administrator relies on TLS to protect the password, it is recommended that
unprotected authentication be disabled. This is done using the security directive's simple_bind option,
which provides fine grain control over the level of confidential protection to require for simple user/password
authentication. E.g., using security simple_bind=56 would require simple binds to use encryption of DES
equivalent or better.

The user/password authenticated bind mechanism can be completely disabled by setting "disallow
bind_simple".

Note: An unsuccessful bind always results in the session having an anonymous authorization association.

14.3.2. SASL method

The LDAP SASL method allows the use of any SASL authentication mechanism. The Using SASL section
discusses the use of SASL.

14.4. Password Storage

LDAP passwords are normally stored in the userPassword attribute. RFC4519 specifies that passwords are
not stored in encrypted (or hashed) form. This allows a wide range of password-based authentication
mechanisms, such as DIGEST-MD5 to be used. This is also the most interoperable storage scheme.

However, it may be desirable to store a hash of password instead. slapd(8) supports a variety of storage
schemes for the administrator to choose from.

Note: Values of password attributes, regardless of storage scheme used, should be protected as if they were
clear text. Hashed passwords are subject to dictionary attacks and brute-force attacks.

The userPassword attribute is allowed to have more than one value, and it is possible for each value to be
stored in a different form. During authentication, slapd will iterate through the values until it finds one that
matches the offered password or until it runs out of values to inspect. The storage scheme is stored as a prefix
on the value, so a hashed password using the Salted SHA1 (SSHA) scheme looks like:

 userPassword: {SSHA}DkMTwBl+a/3DQTxCYEApdUtNXGgdUac3

The advantage of hashed passwords is that an attacker which discovers the hash does not have direct access to

OpenLDAP Software 2.5 Administrator's Guide

141

https://www.rfc-editor.org/rfc/rfc4519.txt

the actual password. Unfortunately, as dictionary and brute force attacks are generally quite easy for attackers
to successfully mount, this advantage is marginal at best (this is why all modern Unix systems use shadow
password files).

The disadvantages of hashed storage is that they are non-standard, may cause interoperability problem, and
generally preclude the use of stronger than Simple (or SASL/PLAIN) password-based authentication
mechanisms such as DIGEST-MD5.

14.4.1. SSHA password storage scheme

This is the salted version of the SHA scheme. It is believed to be the most secure password storage scheme
supported by slapd.

These values represent the same password:

 userPassword: {SSHA}DkMTwBl+a/3DQTxCYEApdUtNXGgdUac3
 userPassword: {SSHA}d0Q0626PSH9VUld7yWpR0k6BlpQmtczb

14.4.2. CRYPT password storage scheme

This scheme uses the operating system's crypt(3) hash function. It normally produces the traditional
Unix-style 13 character hash, but on systems with glibc2 it can also generate the more secure 34-byte MD5
hash.

 userPassword: {CRYPT}aUihad99hmev6
 userPassword: {CRYPT}1czBJdDqS$TmkzUAb836oMxg/BmIwN.1

The advantage of the CRYPT scheme is that passwords can be transferred to or from an existing Unix
password file without having to know the cleartext form. Both forms of crypt include salt so they have some
resistance to dictionary attacks.

Note: Since this scheme uses the operating system's crypt(3) hash function, it is therefore operating system
specific.

14.4.3. MD5 password storage scheme

This scheme simply takes the MD5 hash of the password and stores it in base64 encoded form:

 userPassword: {MD5}Xr4ilOzQ4PCOq3aQ0qbuaQ==

Although safer than cleartext storage, this is not a very secure scheme. The MD5 algorithm is fast, and
because there is no salt the scheme is vulnerable to a dictionary attack.

14.4.4. SMD5 password storage scheme

This improves on the basic MD5 scheme by adding salt (random data which means that there are many
possible representations of a given plaintext password). For example, both of these values represent the same
password:

 userPassword: {SMD5}4QWGWZpj9GCmfuqEvm8HtZhZS6E=
 userPassword: {SMD5}g2/J/7D5EO6+oPdklp5p8YtNFk4=

OpenLDAP Software 2.5 Administrator's Guide

142

14.4.5. SHA password storage scheme

Like the MD5 scheme, this simply feeds the password through an SHA hash process. SHA is thought to be
more secure than MD5, but the lack of salt leaves the scheme exposed to dictionary attacks.

 userPassword: {SHA}5en6G6MezRroT3XKqkdPOmY/BfQ=

14.4.6. SASL password storage scheme

This is not really a password storage scheme at all. It uses the value of the userPassword attribute to delegate
password verification to another process. See below for more information.

Note: This is not the same as using SASL to authenticate the LDAP session.

14.5. Pass-Through authentication

Since OpenLDAP 2.0 slapd has had the ability to delegate password verification to a separate process. This
uses the sasl_checkpass(3) function so it can use any back-end server that Cyrus SASL supports for checking
passwords. The choice is very wide, as one option is to use saslauthd(8) which in turn can use local files,
Kerberos, an IMAP server, another LDAP server, or anything supported by the PAM mechanism.

The server must be built with the --enable-spasswd configuration option to enable pass-through
authentication.

Note: This is not the same as using a SASL mechanism to authenticate the LDAP session.

Pass-Through authentication works only with plaintext passwords, as used in the "simple bind" and "SASL
PLAIN" authentication mechanisms.

Pass-Through authentication is selective: it only affects users whose userPassword attribute has a value
marked with the "{SASL}" scheme. The format of the attribute is:

 userPassword: {SASL}username@realm

The username and realm are passed to the SASL authentication mechanism and are used to identify the
account whose password is to be verified. This allows arbitrary mapping between entries in OpenLDAP and
accounts known to the backend authentication service.

It would be wise to use access control to prevent users from changing their passwords through LDAP where
they have pass-through authentication enabled.

14.5.1. Configuring slapd to use an authentication provider

Where an entry has a "{SASL}" password value, OpenLDAP delegates the whole process of validating that
entry's password to Cyrus SASL. All the configuration is therefore done in SASL config files.

The first file to be considered is confusingly named slapd.conf and is typically found in the SASL library
directory, often /usr/lib/sasl2/slapd.conf This file governs the use of SASL when talking LDAP to
slapd as well as the use of SASL backends for pass-through authentication. See options.html in the Cyrus

OpenLDAP Software 2.5 Administrator's Guide

143

https://www.cyrusimap.org/sasl/

SASL docs for full details. Here is a simple example for a server that will use saslauthd to verify passwords:

 mech_list: plain
 pwcheck_method: saslauthd
 saslauthd_path: /var/run/sasl2/mux

14.5.2. Configuring saslauthd

saslauthd is capable of using many different authentication services: see saslauthd(8) for details. A common
requirement is to delegate some or all authentication to another LDAP server. Here is a sample
saslauthd.conf that uses Microsoft Active Directory (AD):

 ldap_servers: ldap://dc1.example.com/ ldap://dc2.example.com/

 ldap_search_base: cn=Users,DC=ad,DC=example,DC=com
 ldap_filter: (userPrincipalName=%u)

 ldap_bind_dn: cn=saslauthd,cn=Users,DC=ad,DC=example,DC=com
 ldap_password: secret

In this case, saslauthd is run with the ldap authentication mechanism and is set to combine the SASL realm
with the login name:

 saslauthd -a ldap -r

This means that the "username@realm" string from the userPassword attribute ends up being used to search
AD for "userPrincipalName=username@realm" - the password is then verified by attempting to bind to AD
using the entry found by the search and the password supplied by the LDAP client.

14.5.3. Testing pass-through authentication

It is usually best to start with the back-end authentication provider and work through saslauthd and slapd
towards the LDAP client.

In the AD example above, first check that the DN and password that saslauthd will use when it connects to
AD are valid:

 ldapsearch -x -H ldap://dc1.example.com/ \
 -D cn=saslauthd,cn=Users,DC=ad,DC=example,DC=com \
 -w secret \
 -b '' \
 -s base

Next check that a sample AD user can be found:

 ldapsearch -x -H ldap://dc1.example.com/ \
 -D cn=saslauthd,cn=Users,DC=ad,DC=example,DC=com \
 -w secret \
 -b cn=Users,DC=ad,DC=example,DC=com \
 "(userPrincipalName=user@ad.example.com)"

Check that the user can bind to AD:

 ldapsearch -x -H ldap://dc1.example.com/ \

OpenLDAP Software 2.5 Administrator's Guide

144

https://www.cyrusimap.org/sasl/

 -D cn=user,cn=Users,DC=ad,DC=example,DC=com \
 -w userpassword \
 -b cn=user,cn=Users,DC=ad,DC=example,DC=com \
 -s base \
 "(objectclass=*)"

If all that works then saslauthd should be able to do the same:

 testsaslauthd -u user@ad.example.com -p userpassword
 testsaslauthd -u user@ad.example.com -p wrongpassword

Now put the magic token into an entry in OpenLDAP:

 userPassword: {SASL}user@ad.example.com

It should now be possible to bind to OpenLDAP using the DN of that entry and the password of the AD user.

OpenLDAP Software 2.5 Administrator's Guide

145

OpenLDAP Software 2.5 Administrator's Guide

146

15. Using SASL
OpenLDAP clients and servers are capable of authenticating via the Simple Authentication and Security Layer
(SASL) framework, which is detailed in RFC4422. This chapter describes how to make use of SASL in
OpenLDAP.

There are several industry standard authentication mechanisms that can be used with SASL, including
GSSAPI for Kerberos V, DIGEST-MD5, and PLAIN and EXTERNAL for use with Transport Layer Security
(TLS).

The standard client tools provided with OpenLDAP Software, such as ldapsearch(1) and ldapmodify(1), will
by default attempt to authenticate the user to the LDAP directory server using SASL. Basic authentication
service can be set up by the LDAP administrator with a few steps, allowing users to be authenticated to the
slapd server as their LDAP entry. With a few extra steps, some users and services can be allowed to exploit
SASL's proxy authorization feature, allowing them to authenticate themselves and then switch their identity to
that of another user or service.

This chapter assumes you have read Cyrus SASL for System Administrators, provided with the Cyrus SASL
package (in doc/sysadmin.html) and have a working Cyrus SASL installation. You should use the Cyrus
SASL sample_client and sample_server to test your SASL installation before attempting to make use of it
with OpenLDAP Software.

Note that in the following text the term user is used to describe a person or application entity who is
connecting to the LDAP server via an LDAP client, such as ldapsearch(1). That is, the term user not only
applies to both an individual using an LDAP client, but to an application entity which issues LDAP client
operations without direct user control. For example, an e-mail server which uses LDAP operations to access
information held in an LDAP server is an application entity.

15.1. SASL Security Considerations

SASL offers many different authentication mechanisms. This section briefly outlines security considerations.

Some mechanisms, such as PLAIN and LOGIN, offer no greater security over LDAP simple authentication.
Like LDAP simple authentication, such mechanisms should not be used unless you have adequate security
protections in place. It is recommended that these mechanisms be used only in conjunction with Transport
Layer Security (TLS). Use of PLAIN and LOGIN are not discussed further in this document.

The DIGEST-MD5 mechanism is the mandatory-to-implement authentication mechanism for LDAPv3.
Though DIGEST-MD5 is not a strong authentication mechanism in comparison with trusted third party
authentication systems (such as Kerberos or public key systems), it does offer significant protections against a
number of attacks. Unlike the CRAM-MD5 mechanism, it prevents chosen plaintext attacks. DIGEST-MD5 is
favored over the use of plaintext password mechanisms. The CRAM-MD5 mechanism is deprecated in favor
of DIGEST-MD5. Use of DIGEST-MD5 is discussed below.

The GSSAPI mechanism utilizes GSS-API Kerberos V to provide secure authentication services. The
KERBEROS_V4 mechanism is available for those using Kerberos IV. Kerberos is viewed as a secure,
distributed authentication system suitable for both small and large enterprises. Use of GSSAPI and
KERBEROS_V4 are discussed below.

147

https://www.rfc-editor.org/rfc/rfc4422.txt
https://www.cyrusimap.org/sasl/

The EXTERNAL mechanism utilizes authentication services provided by lower level network services such
as Transport Layer Security (TLS). When used in conjunction with TLS X.509-based public key technology,
EXTERNAL offers strong authentication. TLS is discussed in the Using TLS chapter.

EXTERNAL can also be used with the ldapi:/// transport, as Unix-domain sockets can report the UID and
GID of the client process.

There are other strong authentication mechanisms to choose from, including OTP (one time passwords) and
SRP (secure remote passwords). These mechanisms are not discussed in this document.

15.2. SASL Authentication

Getting basic SASL authentication running involves a few steps. The first step configures your slapd server
environment so that it can communicate with client programs using the security system in place at your site.
This usually involves setting up a service key, a public key, or other form of secret. The second step concerns
mapping authentication identities to LDAP DN's, which depends on how entries are laid out in your directory.
An explanation of the first step will be given in the next section using Kerberos V4 as an example mechanism.
The steps necessary for your site's authentication mechanism will be similar, but a guide to every mechanism
available under SASL is beyond the scope of this chapter. The second step is described in the section
Mapping Authentication Identities.

15.2.1. GSSAPI

This section describes the use of the SASL GSSAPI mechanism and Kerberos V with OpenLDAP. It will be
assumed that you have Kerberos V deployed, you are familiar with the operation of the system, and that your
users are trained in its use. This section also assumes you have familiarized yourself with the use of the
GSSAPI mechanism by reading Configuring GSSAPI and Cyrus SASL (provided with Cyrus SASL in the
doc/gssapi file) and successfully experimented with the Cyrus provided sample_server and
sample_client applications. General information about Kerberos is available at
http://web.mit.edu/kerberos/www/.

To use the GSSAPI mechanism with slapd(8) one must create a service key with a principal for ldap service
within the realm for the host on which the service runs. For example, if you run slapd on
directory.example.com and your realm is EXAMPLE.COM, you need to create a service key with the
principal:

 ldap/directory.example.com@EXAMPLE.COM

When slapd(8) runs, it must have access to this key. This is generally done by placing the key into a keytab
file, /etc/krb5.keytab. See your Kerberos and Cyrus SASL documentation for information regarding
keytab location settings.

To use the GSSAPI mechanism to authenticate to the directory, the user obtains a Ticket Granting Ticket
(TGT) prior to running the LDAP client. When using OpenLDAP client tools, the user may mandate use of
the GSSAPI mechanism by specifying -Y GSSAPI as a command option.

For the purposes of authentication and authorization, slapd(8) associates an authentication request DN of the
form:

 uid=<primary[/instance][@realm]>,cn=gssapi,cn=auth

OpenLDAP Software 2.5 Administrator's Guide

148

http://web.mit.edu/kerberos/www/

The realm is omitted by Cyrus SASL if it's equal to the default realm of the server in /etc/krb5.conf.

Continuing our example, a user with the Kerberos principal kurt@EXAMPLE.COM would have the associated
DN:

 uid=kurt,cn=gssapi,cn=auth

and the principal ursula/admin@FOREIGN.REALM would have the associated DN:

 uid=ursula/admin@foreign.realm,cn=gssapi,cn=auth

The authentication request DN can be used directly in ACLs and groupOfNames "member" attributes, since it
is of legitimate LDAP DN format. Or alternatively, the authentication DN could be mapped before use. See
the section Mapping Authentication Identities for details.

If you configure the olcSaslRealm then it will be inserted as an extra component in the authorization DN,
regardless of any Kerberos realms in use. For example, if you set olcSaslRealm to example.com then you will
get:

 uid=kurt,cn=example.com,cn=gssapi,cn=auth
 uid=ursula/admin@foreign.realm,cn=example.com,cn=gssapi,cn=auth

15.2.2. KERBEROS_V4

This section describes the use of the SASL KERBEROS_V4 mechanism with OpenLDAP. It will be assumed
that you are familiar with the workings of the Kerberos IV security system, and that your site has Kerberos IV
deployed. Your users should be familiar with authentication policy, how to receive credentials in a Kerberos
ticket cache, and how to refresh expired credentials.

Note: KERBEROS_V4 and Kerberos IV are deprecated in favor of GSSAPI and Kerberos V.

Client programs will need to be able to obtain a session key for use when connecting to your LDAP server.
This allows the LDAP server to know the identity of the user, and allows the client to know it is connecting to
a legitimate server. If encryption layers are to be used, the session key can also be used to help negotiate that
option.

The slapd server runs the service called "ldap", and the server will require a srvtab file with a service key.
SASL aware client programs will be obtaining an "ldap" service ticket with the user's ticket granting ticket
(TGT), with the instance of the ticket matching the hostname of the OpenLDAP server. For example, if your
realm is named EXAMPLE.COM and the slapd server is running on the host named directory.example.com,
the /etc/srvtab file on the server will have a service key

 ldap.directory@EXAMPLE.COM

When an LDAP client is authenticating a user to the directory using the KERBEROS_IV mechanism, it will
request a session key for that same principal, either from the ticket cache or by obtaining a new one from the
Kerberos server. This will require the TGT to be available and valid in the cache as well. If it is not present or
has expired, the client may print out the message:

 ldap_sasl_interactive_bind_s: Local error

OpenLDAP Software 2.5 Administrator's Guide

149

When the service ticket is obtained, it will be passed to the LDAP server as proof of the user's identity. The
server will extract the identity and realm out of the service ticket using SASL library calls, and convert them
into an authentication request DN of the form

 uid=<username>,cn=<realm>,cn=<mechanism>,cn=auth

So in our above example, if the user's name were "adamson", the authentication request DN would be:

 uid=adamson,cn=example.com,cn=kerberos_v4,cn=auth

This authentication request DN can be used directly ACLs or, alternatively, mapped prior to use. See the
section Mapping Authentication Identities for details.

15.2.3. DIGEST-MD5

This section describes the use of the SASL DIGEST-MD5 mechanism using secrets stored either in the
directory itself or in Cyrus SASL's own database. DIGEST-MD5 relies on the client and the server sharing a
"secret", usually a password. The server generates a challenge and the client a response proving that it knows
the shared secret. This is much more secure than simply sending the secret over the wire.

Cyrus SASL supports several shared-secret mechanisms. To do this, it needs access to the plaintext password
(unlike mechanisms which pass plaintext passwords over the wire, where the server can store a hashed version
of the password).

The server's copy of the shared-secret may be stored in Cyrus SASL's own sasldb database, in an external
system accessed via saslauthd, or in LDAP database itself. In either case it is very important to apply file
access controls and LDAP access controls to prevent exposure of the passwords. The configuration and
commands discussed in this section assume the use of Cyrus SASL 2.1.

To use secrets stored in sasldb, simply add users with the saslpasswd2 command:

 saslpasswd2 -c <username>

The passwords for such users must be managed with the saslpasswd2 command.

To use secrets stored in the LDAP directory, place plaintext passwords in the userPassword attribute. It will
be necessary to add an option to slapd.conf to make sure that passwords set using the LDAP Password
Modify Operation are stored in plaintext:

 password-hash {CLEARTEXT}

Passwords stored in this way can be managed either with ldappasswd(1) or by simply modifying the
userPassword attribute. Regardless of where the passwords are stored, a mapping will be needed from
authentication request DN to user's DN.

The DIGEST-MD5 mechanism produces authentication IDs of the form:

 uid=<username>,cn=<realm>,cn=digest-md5,cn=auth

If the default realm is used, the realm name is omitted from the ID, giving:

 uid=<username>,cn=digest-md5,cn=auth

OpenLDAP Software 2.5 Administrator's Guide

150

See Mapping Authentication Identities below for information on optional mapping of identities.

With suitable mappings in place, users can specify SASL IDs when performing LDAP operations, and the
password stored in sasldb or in the directory itself will be used to verify the authentication. For example, the
user identified by the directory entry:

 dn: cn=Andrew Findlay+uid=u000997,dc=example,dc=com
 objectclass: inetOrgPerson
 objectclass: person
 sn: Findlay
 uid: u000997
 userPassword: secret

can issue commands of the form:

 ldapsearch -Y DIGEST-MD5 -U u000997 ...

Note: in each of the above cases, no authorization identity (e.g. -X) was provided. Unless you are attempting
SASL Proxy Authorization, no authorization identity should be specified. The server will infer an
authorization identity from authentication identity (as described below).

15.2.4. EXTERNAL

The SASL EXTERNAL mechanism makes use of an authentication performed by a lower-level protocol:
usually TLS or Unix IPC

Each transport protocol returns Authentication Identities in its own format:

15.2.4.1. TLS Authentication Identity Format

This is the Subject DN from the client-side certificate. Note that DNs are displayed differently by LDAP and
by X.509, so a certificate issued to

 C=gb, O=The Example Organisation, CN=A Person

will produce an authentication identity of:

 cn=A Person,o=The Example Organisation,c=gb

Note that you must set a suitable value for TLSVerifyClient to make the server request the use of a client-side
certificate. Without this, the SASL EXTERNAL mechanism will not be offered. Refer to the Using TLS
chapter for details.

15.2.4.2. IPC (ldapi:///) Identity Format

This is formed from the Unix UID and GID of the client process:

 gidNumber=<number>+uidNumber=<number>,cn=peercred,cn=external,cn=auth

Thus, a client process running as root will be:

 gidNumber=0+uidNumber=0,cn=peercred,cn=external,cn=auth

OpenLDAP Software 2.5 Administrator's Guide

151

15.2.5. Mapping Authentication Identities

The authentication mechanism in the slapd server will use SASL library calls to obtain the authenticated user's
"username", based on whatever underlying authentication mechanism was used. This username is in the
namespace of the authentication mechanism, and not in the normal LDAP namespace. As stated in the
sections above, that username is reformatted into an authentication request DN of the form

 uid=<username>,cn=<realm>,cn=<mechanism>,cn=auth

or

 uid=<username>,cn=<mechanism>,cn=auth

depending on whether or not <mechanism> employs the concept of "realms". Note also that the realm part
will be omitted if the default realm was used in the authentication.

The ldapwhoami(1) command may be used to determine the identity associated with the user. It is very useful
for determining proper function of mappings.

It is not intended that you should add LDAP entries of the above form to your LDAP database. Chances are
you have an LDAP entry for each of the persons that will be authenticating to LDAP, laid out in your
directory tree, and the tree does not start at cn=auth. But if your site has a clear mapping between the
"username" and an LDAP entry for the person, you will be able to configure your LDAP server to
automatically map a authentication request DN to the user's authentication DN.

Note: it is not required that the authentication request DN nor the user's authentication DN resulting from the
mapping refer to an entry held in the directory. However, additional capabilities become available (see
below).

The LDAP administrator will need to tell the slapd server how to map an authentication request DN to a user's
authentication DN. This is done by adding one or more authz-regexp directives to the slapd.conf(5) file.
This directive takes two arguments:

 authz-regexp <search pattern> <replacement pattern>

The authentication request DN is compared to the search pattern using the regular expression functions
regcomp() and regexec(), and if it matches, it is rewritten as the replacement pattern. If there are multiple
authz-regexp directives, only the first whose search pattern matches the authentication identity is used. The
string that is output from the replacement pattern should be the authentication DN of the user or an LDAP
URL. If replacement string produces a DN, the entry named by this DN need not be held by this server. If the
replace string produces an LDAP URL, that LDAP URL must evaluate to one and only one entry held by this
server.

The search pattern can contain any of the regular expression characters listed in regexec(3C). The main
characters of note are dot ".", asterisk "*", and the open and close parenthesis "(" and ")". Essentially, the dot
matches any character, the asterisk allows zero or more repeats of the immediately preceding character or
pattern, and terms in parenthesis are remembered for the replacement pattern.

The replacement pattern will produce either a DN or URL referring to the user. Anything from the
authentication request DN that matched a string in parenthesis in the search pattern is stored in the variable
"$1". That variable "$1" can appear in the replacement pattern, and will be replaced by the string from the

OpenLDAP Software 2.5 Administrator's Guide

152

authentication request DN. If there were multiple sets of parentheses in the search pattern, the variables $2,
$3, etc are used.

15.2.6. Direct Mapping

Where possible, direct mapping of the authentication request DN to the user's DN is generally recommended.
Aside from avoiding the expense of searching for the user's DN, it allows mapping to DNs which refer to
entries not held by this server.

Suppose the authentication request DN is written as:

 uid=adamson,cn=example.com,cn=gssapi,cn=auth

and the user's actual LDAP entry is:

 uid=adamson,ou=people,dc=example,dc=com

then the following authz-regexp directive in slapd.conf(5) would provide for direct mapping.

 authz-regexp
 uid=([^,]*),cn=example.com,cn=gssapi,cn=auth
 uid=$1,ou=people,dc=example,dc=com

An even more lenient rule could be written as

 authz-regexp
 uid=([^,]*),cn=[^,]*,cn=auth
 uid=$1,ou=people,dc=example,dc=com

Be careful about setting the search pattern too leniently, however, since it may mistakenly allow persons to
become authenticated as a DN to which they should not have access. It is better to write several strict
directives than one lenient directive which has security holes. If there is only one authentication mechanism in
place at your site, and zero or one realms in use, you might be able to map between authentication identities
and LDAP DN's with a single authz-regexp directive.

Don't forget to allow for the case where the realm is omitted as well as the case with an explicitly specified
realm. This may well require a separate authz-regexp directive for each case, with the explicit-realm entry
being listed first.

15.2.7. Search-based mappings

There are a number of cases where mapping to a LDAP URL may be appropriate. For instance, some sites
may have person objects located in multiple areas of the LDAP tree, such as if there were an ou=accounting
tree and an ou=engineering tree, with persons interspersed between them. Or, maybe the desired mapping
must be based upon information in the user's information. Consider the need to map the above authentication
request DN to user whose entry is as follows:

 dn: cn=Mark Adamson,ou=People,dc=Example,dc=COM
 objectclass: person
 cn: Mark Adamson
 uid: adamson

OpenLDAP Software 2.5 Administrator's Guide

153

The information in the authentication request DN is insufficient to allow the user's DN to be directly derived,
instead the user's DN must be searched for. For these situations, a replacement pattern which produces a
LDAP URL can be used in the authz-regexp directives. This URL will then be used to perform an internal
search of the LDAP database to find the person's authentication DN.

An LDAP URL, similar to other URL's, is of the form

 ldap://<host>/<base>?<attrs>?<scope>?<filter>

This contains all of the elements necessary to perform an LDAP search: the name of the server <host>, the
LDAP DN search base <base>, the LDAP attributes to retrieve <attrs>, the search scope <scope> which is
one of the three options "base", "one", or "sub", and lastly an LDAP search filter <filter>. Since the search is
for an LDAP DN within the current server, the <host> portion should be empty. The <attrs> field is also
ignored since only the DN is of concern. These two elements are left in the format of the URL to maintain the
clarity of what information goes where in the string.

Suppose that the person in the example from above did in fact have an authentication username of "adamson"
and that information was kept in the attribute "uid" in their LDAP entry. The authz-regexp directive might
be written as

 authz-regexp
 uid=([^,]*),cn=example.com,cn=gssapi,cn=auth
 ldap:///ou=people,dc=example,dc=com??one?(uid=$1)

This will initiate an internal search of the LDAP database inside the slapd server. If the search returns exactly
one entry, it is accepted as being the DN of the user. If there are more than one entries returned, or if there are
zero entries returned, the authentication fails and the user's connection is left bound as the authentication
request DN.

The attributes that are used in the search filter <filter> in the URL should be indexed to allow faster searching.
If they are not, the authentication step alone can take uncomfortably long periods, and users may assume the
server is down.

A more complex site might have several realms in use, each mapping to a different subtree in the directory.
These can be handled with statements of the form:

 # Match Engineering realm
 authz-regexp
 uid=([^,]*),cn=engineering.example.com,cn=digest-md5,cn=auth
 ldap:///dc=eng,dc=example,dc=com??one?(&(uid=$1)(objectClass=person))

 # Match Accounting realm
 authz-regexp
 uid=([^,].*),cn=accounting.example.com,cn=digest-md5,cn=auth
 ldap:///dc=accounting,dc=example,dc=com??one?(&(uid=$1)(objectClass=person))

 # Default realm is customers.example.com
 authz-regexp
 uid=([^,]*),cn=digest-md5,cn=auth
 ldap:///dc=customers,dc=example,dc=com??one?(&(uid=$1)(objectClass=person))

Note that the explicitly-named realms are handled first, to avoid the realm name becoming part of the UID.
Also note the use of scope and filters to limit matching to desirable entries.

OpenLDAP Software 2.5 Administrator's Guide

154

Note as well that authz-regexp internal search are subject to access controls. Specifically, the authentication
identity must have auth access.

See slapd.conf(5) for more detailed information.

15.3. SASL Proxy Authorization

The SASL offers a feature known as proxy authorization, which allows an authenticated user to request that
they act on the behalf of another user. This step occurs after the user has obtained an authentication DN, and
involves sending an authorization identity to the server. The server will then make a decision on whether or
not to allow the authorization to occur. If it is allowed, the user's LDAP connection is switched to have a
binding DN derived from the authorization identity, and the LDAP session proceeds with the access of the
new authorization DN.

The decision to allow an authorization to proceed depends on the rules and policies of the site where LDAP is
running, and thus cannot be made by SASL alone. The SASL library leaves it up to the server to make the
decision. The LDAP administrator sets the guidelines of who can authorize to what identity by adding
information into the LDAP database entries. By default, the authorization features are disabled, and must be
explicitly configured by the LDAP administrator before use.

15.3.1. Uses of Proxy Authorization

This sort of service is useful when one entity needs to act on the behalf of many other users. For example,
users may be directed to a web page to make changes to their personal information in their LDAP entry. The
users authenticate to the web server to establish their identity, but the web server CGI cannot authenticate to
the LDAP server as that user to make changes for them. Instead, the web server authenticates itself to the
LDAP server as a service identity, say,

 cn=WebUpdate,dc=example,dc=com

and then it will SASL authorize to the DN of the user. Once so authorized, the CGI makes changes to the
LDAP entry of the user, and as far as the slapd server can tell for its ACLs, it is the user themself on the other
end of the connection. The user could have connected to the LDAP server directly and authenticated as
themself, but that would require the user to have more knowledge of LDAP clients, knowledge which the web
page provides in an easier format.

Proxy authorization can also be used to limit access to an account that has greater access to the database. Such
an account, perhaps even the root DN specified in slapd.conf(5), can have a strict list of people who can
authorize to that DN. Changes to the LDAP database could then be only allowed by that DN, and in order to
become that DN, users must first authenticate as one of the persons on the list. This allows for better auditing
of who made changes to the LDAP database. If people were allowed to authenticate directly to the privileged
account, possibly through the rootpw slapd.conf(5) directive or through a userPassword attribute, then
auditing becomes more difficult.

Note that after a successful proxy authorization, the original authentication DN of the LDAP connection is
overwritten by the new DN from the authorization request. If a service program is able to authenticate itself as
its own authentication DN and then authorize to other DN's, and it is planning on switching to several
different identities during one LDAP session, it will need to authenticate itself each time before authorizing to
another DN (or use a different proxy authorization mechanism). The slapd server does not keep record of the
service program's ability to switch to other DN's. On authentication mechanisms like Kerberos this will not

OpenLDAP Software 2.5 Administrator's Guide

155

require multiple connections being made to the Kerberos server, since the user's TGT and "ldap" session key
are valid for multiple uses for the several hours of the ticket lifetime.

15.3.2. SASL Authorization Identities

The SASL authorization identity is sent to the LDAP server via the -X switch for ldapsearch(1) and other
tools, or in the *authzid parameter to the lutil_sasl_defaults() call. The identity can be in one of two forms,
either

 u:<username>

or

 dn:<dn>

In the first form, the <username> is from the same namespace as the authentication identities above. It is the
user's username as it is referred to by the underlying authentication mechanism. Authorization identities of
this form are converted into a DN format by the same function that the authentication process used, producing
an authorization request DN of the form

 uid=<username>,cn=<realm>,cn=<mechanism>,cn=auth

That authorization request DN is then run through the same authz-regexp process to convert it into a
legitimate authorization DN from the database. If it cannot be converted due to a failed search from an LDAP
URL, the authorization request fails with "inappropriate access". Otherwise, the DN string is now a legitimate
authorization DN ready to undergo approval.

If the authorization identity was provided in the second form, with a "dn:" prefix, the string after the prefix is
already in authorization DN form, ready to undergo approval.

15.3.3. Proxy Authorization Rules

Once slapd has the authorization DN, the actual approval process begins. There are two attributes that the
LDAP administrator can put into LDAP entries to allow authorization:

 authzTo
 authzFrom

Both can be multivalued. The authzTo attribute is a source rule, and it is placed into the entry associated with
the authentication DN to tell what authorization DNs the authenticated DN is allowed to assume. The second
attribute is a destination rule, and it is placed into the entry associated with the requested authorization DN to
tell which authenticated DNs may assume it.

The choice of which authorization policy attribute to use is up to the administrator. Source rules are checked
first in the person's authentication DN entry, and if none of the authzTo rules specify the authorization is
permitted, the authzFrom rules in the authorization DN entry are then checked. If neither case specifies that
the request be honored, the request is denied. Since the default behavior is to deny authorization requests,
rules only specify that a request be allowed; there are no negative rules telling what authorizations to deny.

The value(s) in the two attributes are of the same form as the output of the replacement pattern of a
authz-regexp directive: either a DN or an LDAP URL. For example, if a authzTo value is a DN, that DN is

OpenLDAP Software 2.5 Administrator's Guide

156

one the authenticated user can authorize to. On the other hand, if the authzTo value is an LDAP URL, the
URL is used as an internal search of the LDAP database, and the authenticated user can become ANY DN
returned by the search. If an LDAP entry looked like:

 dn: cn=WebUpdate,dc=example,dc=com
 authzTo: ldap:///dc=example,dc=com??sub?(objectclass=person)

then any user who authenticated as cn=WebUpdate,dc=example,dc=com could authorize to any other LDAP
entry under the search base dc=example,dc=com which has an objectClass of Person.

15.3.3.1. Notes on Proxy Authorization Rules

An LDAP URL in a authzTo or authzFrom attribute will return a set of DNs. Each DN returned will be
checked. Searches which return a large set can cause the authorization process to take an uncomfortably long
time. Also, searches should be performed on attributes that have been indexed by slapd.

To help produce more sweeping rules for authzFrom and authzTo, the values of these attributes are allowed
to be DNs with regular expression characters in them. This means a source rule like

 authzTo: dn.regex:^uid=[^,]*,dc=example,dc=com$

would allow that authenticated user to authorize to any DN that matches the regular expression pattern given.
This regular expression comparison can be evaluated much faster than an LDAP search for (uid=*).

Also note that the values in an authorization rule must be one of the two forms: an LDAP URL or a DN (with
or without regular expression characters). Anything that does not begin with "ldap://" is taken as a DN. It is
not permissible to enter another authorization identity of the form "u:<username>" as an authorization rule.

15.3.3.2. Policy Configuration

The decision of which type of rules to use, authzFrom or authzTo, will depend on the site's situation. For
example, if the set of people who may become a given identity can easily be written as a search filter, then a
single destination rule could be written. If the set of people is not easily defined by a search filter, and the set
of people is small, it may be better to write a source rule in the entries of each of those people who should be
allowed to perform the proxy authorization.

By default, processing of proxy authorization rules is disabled. The authz-policy directive must be set in the
slapd.conf(5) file to enable authorization. This directive can be set to none for no rules (the default), to for
source rules, from for destination rules, or both for both source and destination rules.

Source rules are extremely powerful. If ordinary users have access to write the authzTo attribute in their own
entries, then they can write rules that would allow them to authorize as anyone else. As such, when using
source rules, the authzTo attribute should be protected with an ACL that only allows privileged users to set its
values.

OpenLDAP Software 2.5 Administrator's Guide

157

OpenLDAP Software 2.5 Administrator's Guide

158

16. Using TLS
OpenLDAP clients and servers are capable of using the Transport Layer Security (TLS) framework to provide
integrity and confidentiality protections and to support LDAP authentication using the SASL EXTERNAL
mechanism. TLS is defined in RFC4346.

Note: For generating certificates, please reference http://www.openldap.org/faq/data/cache/185.html

16.1. TLS Certificates

TLS uses X.509 certificates to carry client and server identities. All servers are required to have valid
certificates, whereas client certificates are optional. Clients must have a valid certificate in order to
authenticate via SASL EXTERNAL. For more information on creating and managing certificates, see the
OpenSSL or GnuTLS documentation, depending on which TLS implementation libraries you are using.

16.1.1. Server Certificates

The DN of a server certificate must use the CN attribute to name the server, and the CN must carry the server's
fully qualified domain name. Additional alias names and wildcards may be present in the subjectAltName
certificate extension. More details on server certificate names are in RFC4513.

16.1.2. Client Certificates

The DN of a client certificate can be used directly as an authentication DN. Since X.509 is a part of the X.500
standard and LDAP is also based on X.500, both use the same DN formats and generally the DN in a user's
X.509 certificate should be identical to the DN of their LDAP entry. However, sometimes the DNs may not be
exactly the same, and so the mapping facility described in Mapping Authentication Identities can be applied to
these DNs as well.

16.2. TLS Configuration

After obtaining the required certificates, a number of options must be configured on both the client and the
server to enable TLS and make use of the certificates. At a minimum, the clients must be configured with the
name of the file containing all of the Certificate Authority (CA) certificates it will trust. The server must be
configured with the CA certificates and also its own server certificate and private key.

Typically a single CA will have issued the server certificate and all of the trusted client certificates, so the
server only needs to trust that one signing CA. However, a client may wish to connect to a variety of secure
servers managed by different organizations, with server certificates generated by many different CAs. As
such, a client is likely to need a list of many different trusted CAs in its configuration.

16.2.1. Server Configuration

The configuration directives for slapd belong in the global directives section of slapd.conf(5).

159

https://www.rfc-editor.org/rfc/rfc4346.txt
http://www.openldap.org/faq/data/cache/185.html
https://www.openssl.org/
https://gnutls.org/
https://www.rfc-editor.org/rfc/rfc4513.txt

16.2.1.1. TLSCACertificateFile <filename>

This directive specifies the PEM-format file containing certificates for the CA's that slapd will trust. The
certificate for the CA that signed the server certificate must be included among these certificates. If the
signing CA was not a top-level (root) CA, certificates for the entire sequence of CA's from the signing CA to
the top-level CA should be present. Multiple certificates are simply appended to the file; the order is not
significant.

16.2.1.2. TLSCACertificatePath <path>

This directive specifies the path of a directory that contains individual CA certificates in separate files. In
addition, this directory must be specially managed using the OpenSSL rehash command. When using this
feature, the OpenSSL library will attempt to locate certificate files based on a hash of their name and serial
number. The OpenSSL rehash command is used to generate symbolic links with the hashed names that point
to the actual certificate files. As such, this option can only be used with a filesystem that actually supports
symbolic links. In general, it is simpler to use the TLSCACertificateFile directive instead.

16.2.1.3. TLSCertificateFile <filename>

This directive specifies the file that contains the slapd server certificate. Certificates are generally public
information and require no special protection.

16.2.1.4. TLSCertificateKeyFile <filename>

This directive specifies the file that contains the private key that matches the certificate stored in the
TLSCertificateFile file. Private keys themselves are sensitive data and are usually password encrypted for
protection. However, the current implementation doesn't support encrypted keys so the key must not be
encrypted and the file itself must be protected carefully.

16.2.1.5. TLSCipherSuite <cipher-suite-spec>

This directive configures what ciphers will be accepted and the preference order. <cipher-suite-spec>
should be a cipher specification for OpenSSL. You can use the command

 openssl ciphers -v ALL

to obtain a verbose list of available cipher specifications.

Besides the individual cipher names, the specifiers HIGH, MEDIUM, LOW, EXPORT, and EXPORT40 may be helpful,
along with TLSv1, SSLv3, and SSLv2.

To obtain the list of ciphers in GnuTLS use:

 gnutls-cli -l

16.2.1.6. TLSRandFile <filename>

This directive specifies the file to obtain random bits from when /dev/urandom is not available. If the system
provides /dev/urandom then this option is not needed, otherwise a source of random data must be configured.
Some systems (e.g. Linux) provide /dev/urandom by default, while others (e.g. Solaris) require the
installation of a patch to provide it, and others may not support it at all. In the latter case, EGD or PRNGD

OpenLDAP Software 2.5 Administrator's Guide

160

should be installed, and this directive should specify the name of the EGD/PRNGD socket. The environment
variable RANDFILE can also be used to specify the filename. Also, in the absence of these options, the .rnd
file in the slapd user's home directory may be used if it exists. To use the .rnd file, just create the file and
copy a few hundred bytes of arbitrary data into the file. The file is only used to provide a seed for the
pseudo-random number generator, and it doesn't need very much data to work.

This directive is ignored with GnuTLS.

16.2.1.7. TLSDHParamFile <filename>

This directive specifies the file that contains parameters for Diffie-Hellman ephemeral key exchange. This is
required in order to use DHE-based cipher suites, including all DSA-based suites (i.e.
TLSCertificateKeyFile points to a DSA key), and RSA when the 'key encipherment' key usage is not
specified in the certificate. Parameters can be generated using the following command

 openssl dhparam [-dsaparam] -out <filename> <numbits> or
 certtool --generate-dh-params --bits <numbits> --outfile <filename>

16.2.1.8. TLSECName <name>

This directive specifies the curve to use for Elliptic Curve Diffie-Hellman ephemeral key exchange. This
option is only needed to use ECDHE-based cipher suites in OpenSSL. The names of supported curves may be
shown using the following command

 openssl ecparam -list_curves

See the OpenSSL documentation for details. This directive is not used for GnuTLS. For GnuTLS the curves
may be specified in the ciphersuite.

16.2.1.9. TLSVerifyClient { never | allow | try | demand }

This directive specifies what checks to perform on client certificates in an incoming TLS session, if any. This
option is set to never by default, in which case the server never asks the client for a certificate. With a setting
of allow the server will ask for a client certificate; if none is provided the session proceeds normally. If a
certificate is provided but the server is unable to verify it, the certificate is ignored and the session proceeds
normally, as if no certificate had been provided. With a setting of try the certificate is requested, and if none
is provided, the session proceeds normally. If a certificate is provided and it cannot be verified, the session is
immediately terminated. With a setting of demand the certificate is requested and a valid certificate must be
provided, otherwise the session is immediately terminated.

Note: The server must request a client certificate in order to use the SASL EXTERNAL authentication
mechanism with a TLS session. As such, a non-default TLSVerifyClient setting must be configured before
SASL EXTERNAL authentication may be attempted, and the SASL EXTERNAL mechanism will only be
offered to the client if a valid client certificate was received.

16.2.2. Client Configuration

Most of the client configuration directives parallel the server directives. The names of the directives are
different, and they go into ldap.conf(5) instead of slapd.conf(5), but their functionality is mostly the same.
Also, while most of these options may be configured on a system-wide basis, they may all be overridden by
individual users in their .ldaprc files.

OpenLDAP Software 2.5 Administrator's Guide

161

The LDAP Start TLS operation is used in LDAP to initiate TLS negotiation. All OpenLDAP command line
tools support a -Z and -ZZ flag to indicate whether a Start TLS operation is to be issued. The latter flag
indicates that the tool is to cease processing if TLS cannot be started while the former allows the command to
continue.

In LDAPv2 environments, TLS is normally started using the LDAP Secure URI scheme (ldaps://) instead
of the normal LDAP URI scheme (ldap://). OpenLDAP command line tools allow either scheme to used
with the -H flag and with the URI ldap.conf(5) option.

16.2.2.1. TLS_CACERT <filename>

This is equivalent to the server's TLSCACertificateFile option. As noted in the TLS Configuration section,
a client typically may need to know about more CAs than a server, but otherwise the same considerations
apply.

16.2.2.2. TLS_CACERTDIR <path>

This is equivalent to the server's TLSCACertificatePath option. The specified directory must be managed
with the OpenSSL rehash command as well.

16.2.2.3. TLS_CERT <filename>

This directive specifies the file that contains the client certificate. This is a user-only directive and can only be
specified in a user's .ldaprc file.

16.2.2.4. TLS_KEY <filename>

This directive specifies the file that contains the private key that matches the certificate stored in the
TLS_CERT file. The same constraints mentioned for TLSCertificateKeyFile apply here. This is also a
user-only directive.

16.2.2.5. TLS_RANDFILE <filename>

This directive is the same as the server's TLSRandFile option.

16.2.2.6. TLS_REQCERT { never | allow | try | demand }

This directive is equivalent to the server's TLSVerifyClient option. However, for clients the default value is
demand and there generally is no good reason to change this setting.

OpenLDAP Software 2.5 Administrator's Guide

162

17. Constructing a Distributed Directory Service
For many sites, running one or more slapd(8) that hold an entire subtree of data is sufficient. But often it is
desirable to have one slapd refer to other directory services for a certain part of the tree (which may or may
not be running slapd).

slapd supports subordinate and superior knowledge information. Subordinate knowledge information is held
in referral objects (RFC3296).

17.1. Subordinate Knowledge Information

Subordinate knowledge information may be provided to delegate a subtree. Subordinate knowledge
information is maintained in the directory as a special referral object at the delegate point. The referral object
acts as a delegation point, gluing two services together. This mechanism allows for hierarchical directory
services to be constructed.

A referral object has a structural object class of referral and has the same Distinguished Name as the
delegated subtree. Generally, the referral object will also provide the auxiliary object class
extensibleObject. This allows the entry to contain appropriate Relative Distinguished Name values. This is
best demonstrated by example.

If the server a.example.net holds dc=example,dc=net and wished to delegate the subtree
ou=subtree,dc=example,dc=net to another server b.example.net, the following named referral object
would be added to a.example.net:

 dn: dc=subtree,dc=example,dc=net
 objectClass: referral
 objectClass: extensibleObject
 dc: subtree
 ref: ldap://b.example.net/dc=subtree,dc=example,dc=net

The server uses this information to generate referrals and search continuations to subordinate servers.

For those familiar with X.500, a named referral object is similar to an X.500 knowledge reference held in a
subr DSE.

17.2. Superior Knowledge Information

Superior knowledge information may be specified using the referral directive. The value is a list of URIs
referring to superior directory services. For servers without immediate superiors, such as for a.example.net
in the example above, the server can be configured to use a directory service with global knowledge, such as
the OpenLDAP Root Service (http://www.openldap.org/faq/index.cgi?file=393).

 referral ldap://root.openldap.org/

However, as a.example.net is the immediate superior to b.example.net, b.example.net would be
configured as follows:

 referral ldap://a.example.net/

163

https://www.rfc-editor.org/rfc/rfc3296.txt
http://www.openldap.org/faq/index.cgi?file=393

The server uses this information to generate referrals for operations acting upon entries not within or
subordinate to any of the naming contexts held by the server.

For those familiar with X.500, this use of the ref attribute is similar to an X.500 knowledge reference held in
a Supr DSE.

17.3. The ManageDsaIT Control

Adding, modifying, and deleting referral objects is generally done using ldapmodify(1) or similar tools which
support the ManageDsaIT control. The ManageDsaIT control informs the server that you intend to manage the
referral object as a regular entry. This keeps the server from sending a referral result for requests which
interrogate or update referral objects.

The ManageDsaIT control should not be specified when managing regular entries.

The -M option of ldapmodify(1) (and other tools) enables ManageDsaIT. For example:

 ldapmodify -M -f referral.ldif -x -D "cn=Manager,dc=example,dc=net" -W

or with ldapsearch(1):

 ldapsearch -M -b "dc=example,dc=net" -x "(objectclass=referral)" '*' ref

Note: the ref attribute is operational and must be explicitly requested when desired in search results.

Note: the use of referrals to construct a Distributed Directory Service is extremely clumsy and not well
supported by common clients. If an existing installation has already been built using referrals, the use of the
chain overlay to hide the referrals will greatly improve the usability of the Directory system. A better
approach would be to use explicitly defined local and proxy databases in subordinate configurations to
provide a seamless view of the Distributed Directory.

Note: LDAP operations, even subtree searches, normally access only one database. That can be changed by
gluing databases together with the subordinate/olcSubordinate keyword. Please see slapd.conf(5) and
slapd-config(5).

OpenLDAP Software 2.5 Administrator's Guide

164

18. Replication
Replicated directories are a fundamental requirement for delivering a resilient enterprise deployment.

OpenLDAP has various configuration options for creating a replicated directory. In previous releases,
replication was discussed in terms of a master server and some number of slave servers. A master accepted
directory updates from other clients, and a slave only accepted updates from a (single) master. The replication
structure was rigidly defined and any particular database could only fulfill a single role, either master or slave.
Another historic term introduced with OpenLDAP 2.4 was multimaster.

As OpenLDAP now supports a wide variety of replication topologies, these terms have been deprecated in
favor of provider/multi-provider and consumer: A provider can accept external write operations and make
them available for retrieval by consumers; consumers request replication updates from providers. Unlike the
rigidly defined master/slave relationships, provider/consumer roles are quite fluid: replication updates
received in a consumer can be further propagated by that consumer to other servers, so a consumer can also
act simultaneously as a provider. Also, a consumer need not be an actual LDAP server; it may be just an
LDAP client.

The following sections will describe the replication technology and discuss the various replication options that
are available.

18.1. Replication Technology

18.1.1. LDAP Sync Replication

The LDAP Sync Replication engine, syncrepl for short, is a consumer-side replication engine that enables the
consumer LDAP server to maintain a shadow copy of a DIT fragment. A syncrepl engine resides at the
consumer and executes as one of the slapd(8) threads. It creates and maintains a replica by connecting to the
replication provider to perform the initial DIT content load followed either by periodic content polling or by
timely updates upon content changes.

Syncrepl uses the LDAP Content Synchronization protocol (or LDAP Sync for short) as the consumer
synchronization protocol. LDAP Sync provides a stateful replication which supports both pull-based and
push-based synchronization and does not mandate the use of a history store. In pull-based replication the
consumer periodically polls the provider for updates. In push-based replication the consumer listens for
updates that are sent by the provider in realtime. Since the protocol does not require a history store, the
provider does not need to maintain any log of updates it has received (Note that the syncrepl engine is
extensible and additional replication protocols may be supported in the future.).

Syncrepl keeps track of the status of the replication content by maintaining and exchanging synchronization
cookies. Because the syncrepl consumer and provider maintain their content status, the consumer can poll the
provider content to perform incremental synchronization by asking for the entries required to make the
consumer up-to-date with the provider content. Syncrepl also enables convenient management of consumers
by maintaining replication status. The consumer database can be constructed from a consumer-side or a
provider-side backup at any synchronization status. Syncrepl can automatically resynchronize the consumer
database to be up-to-date with the current provider content.

Syncrepl supports both pull-based and push-based synchronization. In its basic refreshOnly synchronization
mode, the provider uses pull-based synchronization where the consumer servers need not be tracked and no

165

https://www.openldap.org/

history information is maintained. The information required for the provider to process periodic polling
requests is contained in the synchronization cookie of the request itself. To optimize the pull-based
synchronization, syncrepl utilizes the present phase of the LDAP Sync protocol as well as its delete phase,
instead of falling back on frequent full reloads. To further optimize the pull-based synchronization, the
provider can maintain a per-scope session log as a history store. In its refreshAndPersist mode of
synchronization, the provider uses a push-based synchronization. The provider keeps track of the consumer
servers that have requested a persistent search and sends them necessary updates as the provider replication
content gets modified.

With syncrepl, a consumer can create a replication agreement without changing the provider's configurations
and without restarting the provider server, if the consumer server has appropriate access privileges for the DIT
fragment to be replicated. The consumer server can stop the replication also without the need for provider-side
changes and restart.

Syncrepl supports partial, sparse, and fractional replications. The shadow DIT fragment is defined by a
general search criteria consisting of base, scope, filter, and attribute list. The consumer content is also subject
to the access privileges of the bind identity of the syncrepl replication connection.

18.1.1.1. The LDAP Content Synchronization Protocol

The LDAP Sync protocol allows a client to maintain a synchronized copy of a DIT fragment. The LDAP Sync
operation is defined as a set of controls and other protocol elements which extend the LDAP search operation.
This section introduces the LDAP Content Sync protocol only briefly. For more information, refer to
RFC4533.

The LDAP Sync protocol supports both polling and listening for changes by defining two respective
synchronization operations: refreshOnly and refreshAndPersist. Polling is implemented by the refreshOnly
operation. The consumer polls the provider using an LDAP Search request with an LDAP Sync control
attached. The consumer copy is synchronized to the provider copy at the time of polling using the information
returned in the search. The provider finishes the search operation by returning SearchResultDone at the end of
the search operation as in the normal search. Listening is implemented by the refreshAndPersist operation. As
the name implies, it begins with a search, like refreshOnly. Instead of finishing the search after returning all
entries currently matching the search criteria, the synchronization search remains persistent in the provider.
Subsequent updates to the synchronization content in the provider cause additional entry updates to be sent to
the consumer.

The refreshOnly operation and the refresh stage of the refreshAndPersist operation can be performed with a
present phase or a delete phase.

In the present phase, the provider sends the consumer the entries updated within the search scope since the last
synchronization. The provider sends all requested attributes, be they changed or not, of the updated entries.
For each unchanged entry which remains in the scope, the provider sends a present message consisting only of
the name of the entry and the synchronization control representing state present. The present message does not
contain any attributes of the entry. After the consumer receives all update and present entries, it can reliably
determine the new consumer copy by adding the entries added to the provider, by replacing the entries
modified at the provider, and by deleting entries in the consumer copy which have not been updated nor
specified as being present at the provider.

The transmission of the updated entries in the delete phase is the same as in the present phase. The provider
sends all the requested attributes of the entries updated within the search scope since the last synchronization
to the consumer. In the delete phase, however, the provider sends a delete message for each entry deleted from

OpenLDAP Software 2.5 Administrator's Guide

166

https://www.rfc-editor.org/rfc/rfc4533.txt

the search scope, instead of sending present messages. The delete message consists only of the name of the
entry and the synchronization control representing state delete. The new consumer copy can be determined by
adding, modifying, and removing entries according to the synchronization control attached to the
SearchResultEntry message.

In the case that the LDAP Sync provider maintains a history store and can determine which entries are scoped
out of the consumer copy since the last synchronization time, the provider can use the delete phase. If the
provider does not maintain any history store, cannot determine the scoped-out entries from the history store,
or the history store does not cover the outdated synchronization state of the consumer, the provider should use
the present phase. The use of the present phase is much more efficient than a full content reload in terms of
the synchronization traffic. To reduce the synchronization traffic further, the LDAP Sync protocol also
provides several optimizations such as the transmission of the normalized entryUUIDs and the transmission of
multiple entryUUIDs in a single syncIdSet message.

At the end of the refreshOnly synchronization, the provider sends a synchronization cookie to the consumer as
a state indicator of the consumer copy after the synchronization is completed. The consumer will present the
received cookie when it requests the next incremental synchronization to the provider.

When refreshAndPersist synchronization is used, the provider sends a synchronization cookie at the end of the
refresh stage by sending a Sync Info message with refreshDone=TRUE. It also sends a synchronization
cookie by attaching it to SearchResultEntry messages generated in the persist stage of the synchronization
search. During the persist stage, the provider can also send a Sync Info message containing the
synchronization cookie at any time the provider wants to update the consumer-side state indicator.

In the LDAP Sync protocol, entries are uniquely identified by the entryUUID attribute value. It can function
as a reliable identifier of the entry. The DN of the entry, on the other hand, can be changed over time and
hence cannot be considered as the reliable identifier. The entryUUID is attached to each SearchResultEntry or
SearchResultReference as a part of the synchronization control.

18.1.1.2. Syncrepl Details

The syncrepl engine utilizes both the refreshOnly and the refreshAndPersist operations of the LDAP Sync
protocol. If a syncrepl specification is included in a database definition, slapd(8) launches a syncrepl engine as
a slapd(8) thread and schedules its execution. If the refreshOnly operation is specified, the syncrepl engine
will be rescheduled at the interval time after a synchronization operation is completed. If the
refreshAndPersist operation is specified, the engine will remain active and process the persistent
synchronization messages from the provider.

The syncrepl engine utilizes both the present phase and the delete phase of the refresh synchronization. It is
possible to configure a session log in the provider which stores the entryUUIDs of a finite number of entries
deleted from a database. Multiple consumers share the same session log. The syncrepl engine uses the delete
phase if the session log is present and the state of the consumer server is recent enough that no session log
entries are truncated after the last synchronization of the client. The syncrepl engine uses the present phase if
no session log is configured for the replication content or if the consumer is too outdated to be covered by the
session log. The current design of the session log store is memory based, so the information contained in the
session log is not persistent over multiple provider invocations. It is not currently supported to access the
session log store by using LDAP operations. It is also not currently supported to impose access control to the
session log.

As a further optimization, even in the case the synchronization search is not associated with any session log,
no entries will be transmitted to the consumer server when there has been no update in the replication context.

OpenLDAP Software 2.5 Administrator's Guide

167

The syncrepl engine, which is a consumer-side replication engine, can work with any backends. The LDAP
Sync provider can be configured as an overlay on any backend, but works best with the back-mdb backend.

The LDAP Sync provider maintains a contextCSN for each database as the current synchronization state
indicator of the provider content. It is the largest entryCSN in the provider context such that no transactions
for an entry having smaller entryCSN value remains outstanding. The contextCSN could not just be set to the
largest issued entryCSN because entryCSN is obtained before a transaction starts and transactions are not
committed in the issue order.

The provider stores the contextCSN of a context in the contextCSN attribute of the context suffix entry. The
attribute is not written to the database after every update operation though; instead it is maintained primarily
in memory. At database start time the provider reads the last saved contextCSN into memory and uses the
in-memory copy exclusively thereafter. By default, changes to the contextCSN as a result of database updates
will not be written to the database until the server is cleanly shut down. A checkpoint facility exists to cause
the contextCSN to be written out more frequently if desired.

Note that at startup time, if the provider is unable to read a contextCSN from the suffix entry, it will scan the
entire database to determine the value, and this scan may take quite a long time on a large database. When a
contextCSN value is read, the database will still be scanned for any entryCSN values greater than it, to make
sure the contextCSN value truly reflects the greatest committed entryCSN in the database. On databases
which support inequality indexing, setting an eq index on the entryCSN attribute and configuring contextCSN
checkpoints will greatly speed up this scanning step.

If no contextCSN can be determined by reading and scanning the database, a new value will be generated.
Also, if scanning the database yielded a greater entryCSN than was previously recorded in the suffix entry's
contextCSN attribute, a checkpoint will be immediately written with the new value.

The consumer also stores its replication state, which is the provider's contextCSN received as a
synchronization cookie, in the contextCSN attribute of the suffix entry. The replication state maintained by a
consumer server is used as the synchronization state indicator when it performs subsequent incremental
synchronization with the provider server. It is also used as a provider-side synchronization state indicator
when it functions as a secondary provider server in a cascading replication configuration. Since the consumer
and provider state information are maintained in the same location within their respective databases, any
consumer can be promoted to a provider (and vice versa) without any special actions.

Because a general search filter can be used in the syncrepl specification, some entries in the context may be
omitted from the synchronization content. The syncrepl engine creates a glue entry to fill in the holes in the
consumer context if any part of the consumer content is subordinate to the holes. The glue entries will not be
returned in the search result unless ManageDsaIT control is provided.

Also as a consequence of the search filter used in the syncrepl specification, it is possible for a modification to
remove an entry from the replication scope even though the entry has not been deleted on the provider.
Logically the entry must be deleted on the consumer but in refreshOnly mode the provider cannot detect and
propagate this change without the use of the session log on the provider.

For configuration, please see the Syncrepl section.

18.2. Deployment Alternatives

OpenLDAP Software 2.5 Administrator's Guide

168

While the LDAP Sync specification only defines a narrow scope for replication, the OpenLDAP
implementation is extremely flexible and supports a variety of operating modes to handle other scenarios not
explicitly addressed in the spec.

18.2.1. Delta-syncrepl replication

Disadvantages of LDAP Sync replication:•

LDAP Sync replication is an object-based replication mechanism. When any attribute value in a replicated
object is changed on the provider, each consumer fetches and processes the complete changed object,
including both the changed and unchanged attribute values during replication. One advantage of this
approach is that when multiple changes occur to a single object, the precise sequence of those changes need
not be preserved; only the final state of the entry is significant. But this approach may have drawbacks when
the usage pattern involves single changes to multiple objects.

For example, suppose you have a database consisting of 102,400 objects of 1 KB each. Further, suppose you
routinely run a batch job to change the value of a single two-byte attribute value that appears in each of the
102,400 objects on the provider. Not counting LDAP and TCP/IP protocol overhead, each time you run this
job each consumer will transfer and process 100 MB of data to process 200KB of changes!

99.98% of the data that is transmitted and processed in a case like this will be redundant, since it represents
values that did not change. This is a waste of valuable transmission and processing bandwidth and can cause
an unacceptable replication backlog to develop. While this situation is extreme, it serves to demonstrate a very
real problem that is encountered in some LDAP deployments.

Where Delta-syncrepl comes in:•

Delta-syncrepl, a changelog-based variant of syncrepl, is designed to address situations like the one described
above. Delta-syncrepl works by maintaining a changelog of a selectable depth in a separate database on the
provider. The replication consumer checks the changelog for the changes it needs and, as long as the
changelog contains the needed changes, the consumer fetches the changes from the changelog and applies
them to its database. If, however, a consumer is too far out of sync (or completely empty), conventional
syncrepl is used to bring it up to date and replication then switches back to the delta-syncrepl mode.

Note: since the database state is stored in both the changelog DB and the main DB on the provider, it is
important to backup/restore both the changelog DB and the main DB using slapcat/slapadd when restoring a
DB or copying it to another machine.

For configuration, please see the Delta-syncrepl section.

18.2.2. N-Way Multi-Provider Replication

Multi-Provider replication is a replication technique using Syncrepl to replicate data to multiple provider
("Provider") Directory servers.

18.2.2.1. Valid Arguments for Multi-Provider replication

If any provider fails, other providers will continue to accept updates•
Avoids a single point of failure•
Providers can be located in several physical sites i.e. distributed across the network/globe.•

OpenLDAP Software 2.5 Administrator's Guide

169

Good for Automatic failover/High Availability•

18.2.2.2. Invalid Arguments for Multi-Provider replication

(These are often claimed to be advantages of Multi-Provider replication but those claims are false):

It has NOTHING to do with load balancing•
Providers must propagate writes to all the other servers, which means the network traffic and write
load spreads across all of the servers the same as for single-provider.

•

Server utilization and performance are at best identical for Multi-Provider and Single-Provider
replication; at worst Single-Provider is superior because indexing can be tuned differently to optimize
for the different usage patterns between the provider and the consumers.

•

18.2.2.3. Arguments against Multi-Provider replication

Breaks the data consistency guarantees of the directory model•
http://www.openldap.org/faq/data/cache/1240.html•
If connectivity with a provider is lost because of a network partition, then "automatic failover" can
just compound the problem

•

Typically, a particular machine cannot distinguish between losing contact with a peer because that
peer crashed, or because the network link has failed

•

If a network is partitioned and multiple clients start writing to each of the "providers" then
reconciliation will be a pain; it may be best to simply deny writes to the clients that are partitioned
from the single provider

•

For configuration, please see the N-Way Multi-Provider section below

18.2.3. Mirror mode replication

Mirror mode is a hybrid configuration that provides all of the consistency guarantees of single-provider
replication, while also providing the high availability of multi-provider. In Mirror mode two providers are set
up to replicate from each other (as a multi-provider configuration), but an external frontend is employed to
direct all writes to only one of the two servers. The second provider will only be used for writes if the first
provider crashes, at which point the frontend will switch to directing all writes to the second provider. When a
crashed provider is repaired and restarted it will automatically catch up to any changes on the running
provider and resync.

18.2.3.1. Arguments for Mirror mode

Provides a high-availability (HA) solution for directory writes (replicas handle reads)•
As long as one provider is operational, writes can safely be accepted•
Provider nodes replicate from each other, so they are always up to date and can be ready to take over
(hot standby)

•

Syncrepl also allows the provider nodes to re-synchronize after any downtime•

18.2.3.2. Arguments against Mirror mode

Mirror mode is not what is termed as a Multi-Provider solution. This is because writes have to go to
just one of the mirror nodes at a time

•

Mirror mode can be termed as Active-Active Hot-Standby, therefore an external server (slapd in
proxy mode) or device (hardware load balancer) is needed to manage which provider is currently

•

OpenLDAP Software 2.5 Administrator's Guide

170

http://www.openldap.org/faq/data/cache/1240.html

active
Backups are managed slightly differently•

For configuration, please see the Mirror mode section below

18.2.4. Syncrepl Proxy Mode

While the LDAP Sync protocol supports both pull- and push-based replication, the push mode
(refreshAndPersist) must still be initiated from the consumer before the provider can begin pushing changes.
In some network configurations, particularly where firewalls restrict the direction in which connections can be
made, a provider-initiated push mode may be needed.

This mode can be configured with the aid of the LDAP Backend (Backends and slapd-ldap(8)). Instead of
running the syncrepl engine on the actual consumer, a slapd-ldap proxy is set up near (or collocated with) the
provider that points to the consumer, and the syncrepl engine runs on the proxy.

For configuration, please see the Syncrepl Proxy section.

18.3. Configuring the different replication types

18.3.1. Syncrepl

18.3.1.1. Syncrepl configuration

Because syncrepl is a consumer-side replication engine, the syncrepl specification is defined in slapd.conf(5)
of the consumer server, not in the provider server's configuration file. The initial loading of the consumer
content can be performed either by starting the syncrepl engine with no synchronization cookie or by
populating the consumer by loading an LDIF file dumped as a backup at the provider.

When loading from a backup, it is not required to perform the initial loading from the up-to-date backup of the
provider content. The syncrepl engine will automatically synchronize the initial consumer to the current
provider content. As a result, it is not required to stop the provider server in order to avoid the replication
inconsistency caused by the updates to the provider content during the content backup and loading process.

When replicating a large scale directory, especially in a bandwidth constrained environment, it is advised to
load the consumer from a backup instead of performing a full initial load using syncrepl.

18.3.1.2. Set up the provider slapd

The provider is implemented as an overlay, so the overlay itself must first be configured in slapd.conf(5)
before it can be used. The provider has two primary configuration directives and two secondary directives for
when delta-syncrepl is being used. Because the LDAP Sync search is subject to access control, proper access
control privileges should be set up for the replicated content.

The two primary options to configure are the checkpoint and sessionlog behaviors.

The contextCSN checkpoint is configured by the

 syncprov-checkpoint <ops> <minutes>

OpenLDAP Software 2.5 Administrator's Guide

171

directive. Checkpoints are only tested after successful write operations. If <ops> operations or more than
<minutes> time has passed since the last checkpoint, a new checkpoint is performed. Checkpointing is
disabled by default.

The session log is configured by the

 syncprov-sessionlog <ops>

directive, where <ops> is the maximum number of session log entries the session log can record. All write
operations (except Adds) are recorded in the log.

Note that using the session log requires searching on the entryUUID attribute. Setting an eq index on this
attribute will greatly benefit the performance of the session log on the provider.

The reloadhint option is configured by the

 syncprov-reloadhint <TRUE|FALSE>

directive. It must be set TRUE when using the accesslog overlay for delta-based syncrepl replication support.
The default is FALSE.

The nonpresent option is configured by the

 syncprov-nopresent <TRUE|FALSE>

directive. This value should only be set TRUE for a syncprov instance on top of a log database (such as one
managed by the accesslog overlay). The default is FALSE.

A more complete example of the slapd.conf(5) content is thus:

 database mdb
 maxsize 1073741824
 suffix dc=Example,dc=com
 rootdn dc=Example,dc=com
 directory /var/ldap/db
 index objectclass,entryCSN,entryUUID eq

 overlay syncprov
 syncprov-checkpoint 100 10
 syncprov-sessionlog 100

18.3.1.3. Set up the consumer slapd

The syncrepl directive is specified in the database section of slapd.conf(5) for the consumer context. The
syncrepl engine is backend independent and the directive can be defined with any database type.

 database mdb
 maxsize 1073741824
 suffix dc=Example,dc=com
 rootdn dc=Example,dc=com
 directory /var/ldap/db
 index objectclass,entryCSN,entryUUID eq

 syncrepl rid=123
 provider=ldap://provider.example.com:389

OpenLDAP Software 2.5 Administrator's Guide

172

 type=refreshOnly
 interval=01:00:00:00
 searchbase="dc=example,dc=com"
 filter="(objectClass=organizationalPerson)"
 scope=sub
 attrs="cn,sn,ou,telephoneNumber,title,l"
 schemachecking=off
 bindmethod=simple
 binddn="cn=syncuser,dc=example,dc=com"
 credentials=secret

In this example, the consumer will connect to the provider slapd(8) at port 389 of
ldap://provider.example.com to perform a polling (refreshOnly) mode of synchronization once a day. It will
bind as cn=syncuser,dc=example,dc=com using simple authentication with password "secret". Note that the
access control privilege of cn=syncuser,dc=example,dc=com should be set appropriately in the provider to
retrieve the desired replication content. Also the search limits must be high enough on the provider to allow
the syncuser to retrieve a complete copy of the requested content. The consumer uses the rootdn to write to its
database so it always has full permissions to write all content.

The synchronization search in the above example will search for the entries whose objectClass is
organizationalPerson in the entire subtree rooted at dc=example,dc=com. The requested attributes are cn, sn,
ou, telephoneNumber, title, and l. The schema checking is turned off, so that the consumer slapd(8) will
not enforce entry schema checking when it processes updates from the provider slapd(8).

For more detailed information on the syncrepl directive, see the syncrepl section of The slapd Configuration
File chapter of this admin guide.

18.3.1.4. Start the provider and the consumer slapd

The provider slapd(8) is not required to be restarted. contextCSN is automatically generated as needed: it
might be originally contained in the LDIF file, generated by slapadd (8), generated upon changes in the
context, or generated when the first LDAP Sync search arrives at the provider. If an LDIF file is being loaded
which did not previously contain the contextCSN, the -w option should be used with slapadd (8) to cause it to
be generated. This will allow the server to startup a little quicker the first time it runs.

When starting a consumer slapd(8), it is possible to provide a synchronization cookie as the -c cookie
command line option in order to start the synchronization from a specific state. The cookie is a comma
separated list of name=value pairs. Currently supported syncrepl cookie fields are csn=<csn> and rid=<rid>.
<csn> represents the current synchronization state of the consumer. <rid> identifies a consumer locally
within the consumer server. It is used to relate the cookie to the syncrepl definition in slapd.conf(5) which has
the matching <rid>. The <rid> must have no more than 3 decimal digits. The command line cookie overrides
the synchronization cookie stored in the consumer database.

18.3.2. Delta-syncrepl

18.3.2.1. Delta-syncrepl Provider configuration

Setting up delta-syncrepl requires configuration changes on both the provider and replica servers:

 # Give the replicator DN unlimited read access. This ACL needs to be
 # merged with other ACL statements, and/or moved within the scope
 # of a database. The "by * break" portion causes evaluation of
 # subsequent rules. See slapd.access(5) for details.

OpenLDAP Software 2.5 Administrator's Guide

173

 access to *
 by dn.base="cn=replicator,dc=example,dc=com" read
 by * break

 # Set the module path location
 modulepath /opt/symas/lib/openldap

 # Load the mdb backend
 moduleload back_mdb.la

 # Load the accesslog overlay
 moduleload accesslog.la

 #Load the syncprov overlay
 moduleload syncprov.la

 # Accesslog database definitions
 database mdb
 suffix cn=accesslog
 directory /db/accesslog
 rootdn cn=accesslog
 index default eq
 index entryCSN,objectClass,reqEnd,reqResult,reqStart,reqDN

 overlay syncprov
 syncprov-nopresent TRUE
 syncprov-reloadhint TRUE

 # Let the replicator DN have limitless searches
 limits dn.exact="cn=replicator,dc=example,dc=com" time.soft=unlimited time.hard=unlimited size.soft=unlimited size.hard=unlimited

 # Primary database definitions
 database mdb
 suffix "dc=symas,dc=com"
 rootdn "cn=manager,dc=symas,dc=com"

 ## Whatever other configuration options are desired

 # syncprov specific indexing
 index entryCSN eq
 index entryUUID eq

 # syncrepl Provider for primary db
 overlay syncprov
 syncprov-checkpoint 1000 60

 # accesslog overlay definitions for primary db
 overlay accesslog
 logdb cn=accesslog
 logops writes
 logsuccess TRUE
 # scan the accesslog DB every day, and purge entries older than 7 days
 logpurge 07+00:00 01+00:00

 # Let the replicator DN have limitless searches
 limits dn.exact="cn=replicator,dc=example,dc=com" time.soft=unlimited time.hard=unlimited size.soft=unlimited size.hard=unlimited

For more information, always consult the relevant man pages (slapo-accesslog(5) and slapd.conf(5))

OpenLDAP Software 2.5 Administrator's Guide

174

18.3.2.2. Delta-syncrepl Consumer configuration

 # Replica database configuration
 database mdb
 suffix "dc=symas,dc=com"
 rootdn "cn=manager,dc=symas,dc=com"

 ## Whatever other configuration bits for the replica, like indexing
 ## that you want

 # syncrepl specific indices
 index entryUUID eq

 # syncrepl directives
 syncrepl rid=0
 provider=ldap://ldapprovider.example.com:389
 bindmethod=simple
 binddn="cn=replicator,dc=example,dc=com"
 credentials=secret
 searchbase="dc=example,dc=com"
 logbase="cn=accesslog"
 logfilter="(&(objectClass=auditWriteObject)(reqResult=0))"
 schemachecking=on
 type=refreshAndPersist
 retry="60 +"
 syncdata=accesslog

 # Refer updates to the provider
 updateref ldap://ldapprovider.example.com

The above configuration assumes that you have a replicator identity defined in your database that can be used
to bind to the provider.

Note: An accesslog database is unique to a given provider. It should never be replicated.

18.3.3. N-Way Multi-Provider

For the following example we will be using 3 Provider nodes. Keeping in line with
test050-syncrepl-multiprovider of the OpenLDAP test suite, we will be configuring slapd(8) via cn=config

This sets up the config database:

 dn: cn=config
 objectClass: olcGlobal
 cn: config
 olcServerID: 1

 dn: olcDatabase={0}config,cn=config
 objectClass: olcDatabaseConfig
 olcDatabase: {0}config
 olcRootPW: secret

Each server must have a unique server ID (SID), so second and third servers will have a different
olcServerID obviously:

 dn: cn=config
 objectClass: olcGlobal

OpenLDAP Software 2.5 Administrator's Guide

175

 cn: config
 olcServerID: 2

 dn: olcDatabase={0}config,cn=config
 objectClass: olcDatabaseConfig
 olcDatabase: {0}config
 olcRootPW: secret

This sets up syncrepl as a provider (since these are all providers):

 dn: cn=module,cn=config
 objectClass: olcModuleList
 cn: module
 olcModulePath: /usr/local/libexec/openldap
 olcModuleLoad: syncprov.la

Now we setup the first Provider Node (replace $URI1, $URI2 and $URI3 etc. with your actual ldap urls):

 dn: cn=config
 changetype: modify
 replace: olcServerID
 olcServerID: 1 $URI1
 olcServerID: 2 $URI2
 olcServerID: 3 $URI3

 dn: olcOverlay=syncprov,olcDatabase={0}config,cn=config
 changetype: add
 objectClass: olcOverlayConfig
 objectClass: olcSyncProvConfig
 olcOverlay: syncprov

 dn: olcDatabase={0}config,cn=config
 changetype: modify
 add: olcSyncRepl
 olcSyncRepl: rid=001 provider=$URI1 binddn="cn=config" bindmethod=simple
 credentials=secret searchbase="cn=config" type=refreshAndPersist
 retry="5 5 300 5" timeout=1
 olcSyncRepl: rid=002 provider=$URI2 binddn="cn=config" bindmethod=simple
 credentials=secret searchbase="cn=config" type=refreshAndPersist
 retry="5 5 300 5" timeout=1
 olcSyncRepl: rid=003 provider=$URI3 binddn="cn=config" bindmethod=simple
 credentials=secret searchbase="cn=config" type=refreshAndPersist
 retry="5 5 300 5" timeout=1
 -
 add: olcMultiProvider
 olcMultiProvider: TRUE

Now start up the provider and a consumer/s, also add the above LDIF to the first consumer, second consumer
etc. It will then replicate cn=config. You now have N-Way Multi-Provider on the config database.

We still have to replicate the actual data, not just the config, so add to the provider (all active and configured
consumers/providers will pull down this config, as they are all syncing). Also, replace all ${} variables with
whatever is applicable to your setup:

 dn: olcDatabase={1}$BACKEND,cn=config
 objectClass: olcDatabaseConfig
 objectClass: olc${BACKEND}Config
 olcDatabase: {1}$BACKEND

OpenLDAP Software 2.5 Administrator's Guide

176

 olcSuffix: $BASEDN
 olcDbDirectory: ./db
 olcRootDN: $MANAGERDN
 olcRootPW: $PASSWD
 olcLimits: dn.exact="$MANAGERDN" time.soft=unlimited time.hard=unlimited
 size.soft=unlimited size.hard=unlimited
 olcSyncRepl: rid=004 provider=$URI1 binddn="$MANAGERDN" bindmethod=simple
 credentials=$PASSWD searchbase="$BASEDN" type=refreshOnly
 interval=00:00:00:10 retry="5 5 300 5" timeout=1
 olcSyncRepl: rid=005 provider=$URI2 binddn="$MANAGERDN" bindmethod=simple
 credentials=$PASSWD searchbase="$BASEDN" type=refreshOnly
 interval=00:00:00:10 retry="5 5 300 5" timeout=1
 olcSyncRepl: rid=006 provider=$URI3 binddn="$MANAGERDN" bindmethod=simple
 credentials=$PASSWD searchbase="$BASEDN" type=refreshOnly
 interval=00:00:00:10 retry="5 5 300 5" timeout=1
 olcMultiProvider: TRUE

 dn: olcOverlay=syncprov,olcDatabase={1}${BACKEND},cn=config
 changetype: add
 objectClass: olcOverlayConfig
 objectClass: olcSyncProvConfig
 olcOverlay: syncprov

Note: All of your servers' clocks must be tightly synchronized using e.g. NTP http://www.ntp.org/, atomic
clock, or some other reliable time reference.

Note: As stated in slapd-config(5), URLs specified in olcSyncRepl directives are the URLs of the servers from
which to replicate. These must exactly match the URLs slapd listens on (-h in Command-Line Options).
Otherwise slapd may attempt to replicate from itself, causing a loop.

Note: The entryCSN and contextCSN attributes are used to track changes to an entry and naming context,
respectively. The SID which must be unique for each replication provider is a component of these CSNs. If
you're using slapadd to load a database and there are no entryCSNs already present in the input LDIF, slapadd
will generate them with a SID of 000. This is not a valid SID for multi-provider replication, and you should
use the -S option of slapadd (8) to specify a valid SID for these generated CSNs. If there are existing
entryCSNs in the input LDIF, slapadd will not change them.

18.3.4. Mirror mode

Mirror mode configuration is actually very easy. If you have ever setup a normal slapd syncrepl provider, then
the only change is the following two directives:

 multiprovider on
 serverID 1

Note: You need to make sure that the serverID of each provider node is different and add it as a global
configuration option.

OpenLDAP Software 2.5 Administrator's Guide

177

http://www.ntp.org/

18.3.4.1. Mirror Node Configuration

The first step is to configure the syncrepl provider the same as in the Set up the provider slapd section.

Here's a specific cut down example using LDAP Sync Replication in refreshAndPersist mode:

Mirror mode node 1:

 # Global section
 serverID 1
 # database section

 # syncrepl directive
 syncrepl rid=001
 provider=ldap://ldap-sid2.example.com
 bindmethod=simple
 binddn="cn=mirrormode,dc=example,dc=com"
 credentials=mirrormode
 searchbase="dc=example,dc=com"
 schemachecking=on
 type=refreshAndPersist
 retry="60 +"

 multiprovider on

Mirror mode node 2:

 # Global section
 serverID 2
 # database section

 # syncrepl directive
 syncrepl rid=001
 provider=ldap://ldap-sid1.example.com
 bindmethod=simple
 binddn="cn=mirrormode,dc=example,dc=com"
 credentials=mirrormode
 searchbase="dc=example,dc=com"
 schemachecking=on
 type=refreshAndPersist
 retry="60 +"

 multiprovider on

It's simple really; each Mirror mode node is setup exactly the same, except that the serverID is unique, and
each consumer is pointed to the other server.

18.3.4.1.1. Failover Configuration

There are generally 2 choices for this; 1. Hardware proxies/load-balancing or dedicated proxy software, 2.
using a Back-LDAP proxy as a syncrepl provider

A typical enterprise example might be:

OpenLDAP Software 2.5 Administrator's Guide

178

Figure X.Y: Mirror mode in a Dual Data Center Configuration

18.3.4.1.2. Normal Consumer Configuration

This is exactly the same as the Set up the consumer slapd section. It can either setup in normal syncrepl
replication mode, or in delta-syncrepl replication mode.

18.3.4.2. Mirror mode Summary

You will now have a directory architecture that provides all of the consistency guarantees of single-provider
replication, while also providing the high availability of multi-provider replication.

18.3.5. Syncrepl Proxy

OpenLDAP Software 2.5 Administrator's Guide

179

Figure X.Y: Replacing slurpd

The following example is for a self-contained push-based replication solution:

 ###
 # Standard OpenLDAP Provider
 ###

 include /usr/local/etc/openldap/schema/core.schema
 include /usr/local/etc/openldap/schema/cosine.schema
 include /usr/local/etc/openldap/schema/nis.schema
 include /usr/local/etc/openldap/schema/inetorgperson.schema

 include /usr/local/etc/openldap/slapd.acl

 modulepath /usr/local/libexec/openldap
 moduleload back_mdb.la
 moduleload syncprov.la
 moduleload back_ldap.la

 pidfile /usr/local/var/slapd.pid
 argsfile /usr/local/var/slapd.args

 loglevel sync stats

 database mdb
 suffix "dc=suretecsystems,dc=com"
 directory /usr/local/var/openldap-data

 checkpoint 1024 5

OpenLDAP Software 2.5 Administrator's Guide

180

 index objectClass eq
 # rest of indexes
 index default sub

 rootdn "cn=admin,dc=suretecsystems,dc=com"
 rootpw testing

 # syncprov specific indexing
 index entryCSN eq
 index entryUUID eq

 # syncrepl Provider for primary db
 overlay syncprov
 syncprov-checkpoint 1000 60

 # Let the replicator DN have limitless searches
 limits dn.exact="cn=replicator,dc=suretecsystems,dc=com" time.soft=unlimited time.hard=unlimited size.soft=unlimited size.hard=unlimited

 database monitor

 database config
 rootpw testing

 ##
 # Consumer Proxy that pulls in data via Syncrepl and pushes out via slapd-ldap
 ##

 database ldap
 # ignore conflicts with other databases, as we need to push out to same suffix
 hidden on
 suffix "dc=suretecsystems,dc=com"
 rootdn "cn=slapd-ldap"
 uri ldap://localhost:9012/

 lastmod on

 # We don't need any access to this DSA
 restrict all

 acl-bind bindmethod=simple
 binddn="cn=replicator,dc=suretecsystems,dc=com"
 credentials=testing

 syncrepl rid=001
 provider=ldap://localhost:9011/
 binddn="cn=replicator,dc=suretecsystems,dc=com"
 bindmethod=simple
 credentials=testing
 searchbase="dc=suretecsystems,dc=com"
 type=refreshAndPersist
 retry="5 5 300 5"

 overlay syncprov

A replica configuration for this type of setup could be:

 ###
 # Standard OpenLDAP Replica without Syncrepl
 ###

 include /usr/local/etc/openldap/schema/core.schema

OpenLDAP Software 2.5 Administrator's Guide

181

 include /usr/local/etc/openldap/schema/cosine.schema
 include /usr/local/etc/openldap/schema/nis.schema
 include /usr/local/etc/openldap/schema/inetorgperson.schema

 include /usr/local/etc/openldap/slapd.acl

 modulepath /usr/local/libexec/openldap
 moduleload back_mdb.la
 moduleload syncprov.la
 moduleload back_ldap.la

 pidfile /usr/local/var/slapd.pid
 argsfile /usr/local/var/slapd.args

 loglevel sync stats

 database mdb
 suffix "dc=suretecsystems,dc=com"
 directory /usr/local/var/openldap-consumer/data

 maxsize 85899345920
 checkpoint 1024 5

 index objectClass eq
 # rest of indexes
 index default sub

 rootdn "cn=admin,dc=suretecsystems,dc=com"
 rootpw testing

 # Let the replicator DN have limitless searches
 limits dn.exact="cn=replicator,dc=suretecsystems,dc=com" time.soft=unlimited time.hard=unlimited size.soft=unlimited size.hard=unlimited

 updatedn "cn=replicator,dc=suretecsystems,dc=com"

 # Refer updates to the provider
 updateref ldap://localhost:9011

 database monitor

 database config
 rootpw testing

You can see we use the updatedn directive here and example ACLs (usr/local/etc/openldap/slapd.acl)
for this could be:

 # Give the replicator DN unlimited read access. This ACL may need to be
 # merged with other ACL statements.

 access to *
 by dn.base="cn=replicator,dc=suretecsystems,dc=com" write
 by * break

 access to dn.base=""
 by * read

 access to dn.base="cn=Subschema"
 by * read

 access to dn.subtree="cn=Monitor"

OpenLDAP Software 2.5 Administrator's Guide

182

 by dn.exact="uid=admin,dc=suretecsystems,dc=com" write
 by users read
 by * none

 access to *
 by self write
 by * read

In order to support more replicas, just add more database ldap sections and increment the syncrepl rid number
accordingly.

Note: You must populate the Provider and Replica directories with the same data, unlike when using normal
Syncrepl

If you do not have access to modify the provider directory configuration you can configure a standalone ldap
proxy, which might look like:

OpenLDAP Software 2.5 Administrator's Guide

183

Figure X.Y: Replacing slurpd with a standalone version

The following configuration is an example of a standalone LDAP Proxy:

 include /usr/local/etc/openldap/schema/core.schema
 include /usr/local/etc/openldap/schema/cosine.schema
 include /usr/local/etc/openldap/schema/nis.schema
 include /usr/local/etc/openldap/schema/inetorgperson.schema

 include /usr/local/etc/openldap/slapd.acl

 modulepath /usr/local/libexec/openldap
 moduleload syncprov.la
 moduleload back_ldap.la

 ##
 # Consumer Proxy that pulls in data via Syncrepl and pushes out via slapd-ldap
 ##

 database ldap
 # ignore conflicts with other databases, as we need to push out to same suffix
 hidden on
 suffix "dc=suretecsystems,dc=com"
 rootdn "cn=slapd-ldap"
 uri ldap://localhost:9012/

 lastmod on

 # We don't need any access to this DSA
 restrict all

 acl-bind bindmethod=simple
 binddn="cn=replicator,dc=suretecsystems,dc=com"
 credentials=testing

 syncrepl rid=001
 provider=ldap://localhost:9011/
 binddn="cn=replicator,dc=suretecsystems,dc=com"
 bindmethod=simple
 credentials=testing
 searchbase="dc=suretecsystems,dc=com"
 type=refreshAndPersist
 retry="5 5 300 5"

 overlay syncprov

As you can see, you can let your imagination go wild using Syncrepl and slapd-ldap(8) tailoring your
replication to fit your specific network topology.

OpenLDAP Software 2.5 Administrator's Guide

184

19. Maintenance
System Administration is all about maintenance, so it is only fair that we discuss how to correctly maintain an
OpenLDAP deployment.

19.1. Directory Backups

Backup strategies largely depend on the amount of change in the database and how much of that change an
administrator might be willing to lose in a catastrophic failure. There are two basic methods that can be used:

1. Backup the LMDB database itself

The LMDB database can be copied live using the mdb_copy command. If the database is a sparse file via the
use of the "writemap" environment flag, the resulting copy will be the actual size of the database rather than a
sparse copy.

2. Periodically run slapcat and back up the LDIF file:

Slapcat can be run while slapd is active. However, one runs the risk of an inconsistent database- not from the
point of slapd, but from the point of the applications using LDAP. For example, if a provisioning application
performed tasks that consisted of several LDAP operations, and the slapcat took place concurrently with those
operations, then there might be inconsistencies in the LDAP database from the point of view of that
provisioning application and applications that depended on it. One must, therefore, be convinced something
like that won't happen. One way to do that would be to put the database in read-only mode while performing
the slapcat. The other disadvantage of this approach is that the generated LDIF files can be rather large and
the accumulation of the day's backups could add up to a substantial amount of space.

You can use slapcat(8) to generate an LDIF file for each of your slapd(8) back-mdb databases.

 slapcat -f slapd.conf -b "dc=example,dc=com"

For back-mdb this command may be ran while slapd(8) is running.

19.2. Checkpointing

Setting a checkpoint is only necessary when back-mdb has the dbnosync flag set. Otherwise it has no effect.
With back-mdb the kbyte option is not implemented, meaning it will only run a checkpoint based on the
elapsed amount of minutes flag.

19.3. Migration

The simplest steps needed to migrate between versions or upgrade, depending on your deployment type are:

Stop the current server when convenient1.

slapcat the current data out2.

185

Clear out the current data directory (/usr/local/var/openldap-data/)3.

Perform the software upgrades4.

slapadd the exported data back into the directory5.

Start the server6.

Obviously this doesn't cater for any complicated deployments with N-Way Multi-Provider, but following the
above sections and using either commercial support or community support should help. Also check the
Troubleshooting section.

OpenLDAP Software 2.5 Administrator's Guide

186

20. Monitoring
slapd(8) supports an optional LDAP monitoring interface you can use to obtain information regarding the
current state of your slapd instance. For instance, the interface allows you to determine how many clients are
connected to the server currently. The monitoring information is provided by a specialized backend, the
monitor backend. A manual page, slapd-monitor(5) is available.

When the monitoring interface is enabled, LDAP clients may be used to access information provided by the
monitor backend, subject to access and other controls.

When enabled, the monitor backend dynamically generates and returns objects in response to search requests
in the cn=Monitor subtree. Each object contains information about a particular aspect of the server. The
information is held in a combination of user applications and operational attributes. This information can be
accessed with ldapsearch(1), with any general-purpose LDAP browser, or with specialized monitoring tools.
The Accessing Monitoring Information section provides a brief tutorial on how to use ldapsearch(1) to access
monitoring information, while the Monitor information section details monitoring information base and its
organization.

While support for the monitor backend is included in default builds of slapd(8), this support requires some
configuration to become active. This may be done using either cn=config or slapd.conf(5). The former is
discussed in the Monitor configuration via cn=config section of this of this chapter. The latter is discussed in
the Monitor configuration via slapd.conf(5) section of this chapter. These sections assume monitor backend is
built into slapd (e.g., --enable-monitor=yes, the default). If the monitor backend was built as a module
(e.g., --enable-monitor=mod, this module must loaded. Loading of modules is discussed in the Configuring
slapd and The slapd Configuration File chapters.

20.1. Monitor configuration via cn=config(5)

The monitor backend is statically built into slapd and can be instantiated via ldapadd.

 dn: olcDatabase=monitor,cn=config
 objectClass: olcDatabaseConfig
 olcDatabase: monitor

20.2. Monitor configuration via slapd.conf(5)

Configuration of the slapd.conf(5) to support LDAP monitoring is quite simple.

First, ensure core.schema schema configuration file is included by your slapd.conf(5) file. The monitor
backend requires it.

Second, instantiate the monitor backend by adding a database monitor directive below your existing database
sections. For instance:

 database monitor

Lastly, add additional global or database directives as needed.

Like most other database backends, the monitor backend does honor slapd(8) access and other administrative
controls. As some monitor information may be sensitive, it is generally recommend access to cn=monitor be

187

restricted to directory administrators and their monitoring agents. Adding an access directive immediately
below the database monitor directive is a clear and effective approach for controlling access. For instance, the
addition of the following access directive immediately below the database monitor directive restricts access to
monitoring information to the specified directory manager.

 access to *
 by dn.exact="cn=Manager,dc=example,dc=com
 by * none

More information on slapd(8) access controls, see The access Control Directive section of the The slapd
Configuration File chapter and slapd.access(5).

After restarting slapd(8), you are ready to start exploring the monitoring information provided in cn=config
as discussed in the Accessing Monitoring Information section of this chapter.

One can verify slapd(8) is properly configured to provide monitoring information by attempting to read the
cn=monitor object. For instance, if the following ldapsearch(1) command returns the cn=monitor object
(with, as requested, no attributes), it's working.

 ldapsearch -x -D 'cn=Manager,dc=example,dc=com' -W \
 -b 'cn=Monitor' -s base 1.1

Note that unlike general purpose database backends, the database suffix is hardcoded. It's always cn=Monitor.
So no suffix directive should be provided. Also note that general purpose database backends, the monitor
backend cannot be instantiated multiple times. That is, there can only be one (or zero) occurrences of
database monitor in the server's configuration.

20.3. Accessing Monitoring Information

As previously discussed, when enabled, the monitor backend dynamically generates and returns objects in
response to search requests in the cn=Monitor subtree. Each object contains information about a particular
aspect of the server. The information is held in a combination of user applications and operational attributes.
This information can be accessed with ldapsearch(1), with any general-purpose LDAP browser, or with
specialized monitoring tools.

This section provides a provides a brief tutorial on how to use ldapsearch(1) to access monitoring
information.

To inspect any particular monitor object, one performs search operation on the object with a baseObject scope
and a (objectClass=*) filter. As the monitoring information is contained in a combination of user
applications and operational attributes, the return all user applications attributes (e.g., '*') and all operational
attributes (e.g., '+') should be requested. For instance, to read the cn=Monitor object itself, the ldapsearch(1)
command (modified to fit your configuration) can be used:

 ldapsearch -x -D 'cn=Manager,dc=example,dc=com' -W \
 -b 'cn=Monitor' -s base '(objectClass=*)' '*' '+'

When run against your server, this should produce output similar to:

 dn: cn=Monitor
 objectClass: monitorServer
 structuralObjectClass: monitorServer

OpenLDAP Software 2.5 Administrator's Guide

188

 cn: Monitor
 creatorsName:
 modifiersName:
 createTimestamp: 20061208223558Z
 modifyTimestamp: 20061208223558Z
 description: This subtree contains monitoring/managing objects.
 description: This object contains information about this server.
 description: Most of the information is held in operational attributes, which
 must be explicitly requested.
 monitoredInfo: OpenLDAP: slapd 2.5 (Dec 7 2006 17:30:29)
 entryDN: cn=Monitor
 subschemaSubentry: cn=Subschema
 hasSubordinates: TRUE

To reduce the number of uninteresting attributes returned, one can be more selective when requesting which
attributes are to be returned. For instance, one could request the return of all attributes allowed by the
monitorServer object class (e.g., @objectClass) instead of all user and all operational attributes:

 ldapsearch -x -D 'cn=Manager,dc=example,dc=com' -W \
 -b 'cn=Monitor' -s base '(objectClass=*)' '@monitorServer'

This limits the output as follows:

 dn: cn=Monitor
 objectClass: monitorServer
 cn: Monitor
 description: This subtree contains monitoring/managing objects.
 description: This object contains information about this server.
 description: Most of the information is held in operational attributes, which
 must be explicitly requested.
 monitoredInfo: OpenLDAP: slapd 2.X (Dec 7 2006 17:30:29)

To return the names of all the monitoring objects, one performs a search of cn=Monitor with subtree scope
and (objectClass=*) filter and requesting no attributes (e.g., 1.1) be returned.

 ldapsearch -x -D 'cn=Manager,dc=example,dc=com' -W -b 'cn=Monitor' -s sub 1.1

If you run this command you will discover that there are many objects in the cn=Monitor subtree. The
following section describes some of the commonly available monitoring objects.

20.4. Monitor Information

The monitor backend provides a wealth of information useful for monitoring the slapd(8) contained in set of
monitor objects. Each object contains information about a particular aspect of the server, such as a backends, a
connection, or a thread. Some objects serve as containers for other objects and used to construct a hierarchy of
objects.

In this hierarchy, the most superior object is {cn=Monitor}. While this object primarily serves as a container
for other objects, most of which are containers, this object provides information about this server. In
particular, it provides the slapd(8) version string. Example:

 dn: cn=Monitor
 monitoredInfo: OpenLDAP: slapd 2.X (Dec 7 2006 17:30:29)

OpenLDAP Software 2.5 Administrator's Guide

189

Note: Examples in this section (and its subsections) have been trimmed to show only key information.

20.4.1. Backends

The cn=Backends,cn=Monitor object provides a list of available backends. The list of available backends
includes all builtin backends, as well as those backends loaded by modules. For example:

 dn: cn=Backends,cn=Monitor
 monitoredInfo: config
 monitoredInfo: ldif
 monitoredInfo: monitor
 monitoredInfo: mdb

This indicates the config, ldif, monitor, and mdb backends are available.

The cn=Backends,cn=Monitor object is also a container for available backend objects. Each available
backend object contains information about a particular backend. For example:

 dn: cn=Backend 0,cn=Backends,cn=Monitor
 monitoredInfo: config
 monitorRuntimeConfig: TRUE
 supportedControl: 2.16.840.1.113730.3.4.2
 seeAlso: cn=Database 0,cn=Databases,cn=Monitor

 dn: cn=Backend 1,cn=Backends,cn=Monitor
 monitoredInfo: ldif
 monitorRuntimeConfig: TRUE
 supportedControl: 2.16.840.1.113730.3.4.2

 dn: cn=Backend 2,cn=Backends,cn=Monitor
 monitoredInfo: monitor
 monitorRuntimeConfig: TRUE
 supportedControl: 2.16.840.1.113730.3.4.2
 seeAlso: cn=Database 2,cn=Databases,cn=Monitor

 dn: cn=Backend 3,cn=Backends,cn=Monitor
 monitoredInfo: mdb
 monitorRuntimeConfig: TRUE
 supportedControl: 1.3.6.1.1.12
 supportedControl: 2.16.840.1.113730.3.4.2
 supportedControl: 1.3.6.1.4.1.4203.666.5.2
 supportedControl: 1.2.840.113556.1.4.319
 supportedControl: 1.3.6.1.1.13.1
 supportedControl: 1.3.6.1.1.13.2
 supportedControl: 1.3.6.1.4.1.4203.1.10.1
 supportedControl: 1.2.840.113556.1.4.1413
 supportedControl: 1.3.6.1.4.1.4203.666.11.7.2

For each of these objects, monitorInfo indicates which backend the information in the object is about. For
instance, the cn=Backend 5,cn=Backends,cn=Monitor object contains (in the example) information about
the mdb backend.

Attribute Description
monitoredInfo Name of backend
supportedControl supported LDAP control extensions

OpenLDAP Software 2.5 Administrator's Guide

190

seeAlso Database objects of instances of this backend

20.4.2. Connections

The main entry is empty; it should contain some statistics on the number of connections.

Dynamic child entries are created for each open connection, with stats on the activity on that connection (the
format will be detailed later). There are two special child entries that show the number of total and current
connections respectively.

For example:

Total Connections:

 dn: cn=Total,cn=Connections,cn=Monitor
 structuralObjectClass: monitorCounterObject
 monitorCounter: 4
 entryDN: cn=Total,cn=Connections,cn=Monitor
 subschemaSubentry: cn=Subschema
 hasSubordinates: FALSE

Current Connections:

 dn: cn=Current,cn=Connections,cn=Monitor
 structuralObjectClass: monitorCounterObject
 monitorCounter: 2
 entryDN: cn=Current,cn=Connections,cn=Monitor
 subschemaSubentry: cn=Subschema
 hasSubordinates: FALSE

20.4.3. Databases

The main entry contains the naming context of each configured database; the child entries contain, for each
database, the type and the naming context.

For example:

 dn: cn=Database 2,cn=Databases,cn=Monitor
 structuralObjectClass: monitoredObject
 monitoredInfo: monitor
 monitorIsShadow: FALSE
 monitorContext: cn=Monitor
 readOnly: FALSE
 entryDN: cn=Database 2,cn=Databases,cn=Monitor
 subschemaSubentry: cn=Subschema
 hasSubordinates: FALSE

20.4.4. Listener

It contains the description of the devices the server is currently listening on:

 dn: cn=Listener 0,cn=Listeners,cn=Monitor
 structuralObjectClass: monitoredObject
 monitorConnectionLocalAddress: IP=0.0.0.0:389
 entryDN: cn=Listener 0,cn=Listeners,cn=Monitor

OpenLDAP Software 2.5 Administrator's Guide

191

 subschemaSubentry: cn=Subschema
 hasSubordinates: FALSE

20.4.5. Log

It contains the currently active log items. The Log subsystem allows user modify operations on the description
attribute, whose values MUST be in the list of admittable log switches:

 Trace
 Packets
 Args
 Conns
 BER
 Filter
 Config
 ACL
 Stats
 Stats2
 Shell
 Parse
 Sync

These values can be added, replaced or deleted; they affect what messages are sent to the syslog device.
Custom values could be added by custom modules.

20.4.6. Operations

It shows some statistics on the operations performed by the server:

 Initiated
 Completed

and for each operation type, i.e.:

 Bind
 Unbind
 Add
 Delete
 Modrdn
 Modify
 Compare
 Search
 Abandon
 Extended

There are too many types to list example here, so please try for yourself using Monitor search example

20.4.7. Overlays

The main entry contains the type of overlays available at run-time; the child entries, for each overlay, contain
the type of the overlay.

It should also contain the modules that have been loaded if dynamic overlays are enabled:

 # Overlays, Monitor

OpenLDAP Software 2.5 Administrator's Guide

192

 dn: cn=Overlays,cn=Monitor
 structuralObjectClass: monitorContainer
 monitoredInfo: syncprov
 monitoredInfo: accesslog
 monitoredInfo: glue
 entryDN: cn=Overlays,cn=Monitor
 subschemaSubentry: cn=Subschema
 hasSubordinates: TRUE

20.4.8. SASL

Currently empty.

20.4.9. Statistics

It shows some statistics on the data sent by the server:

 Bytes
 PDU
 Entries
 Referrals

e.g.

 # Entries, Statistics, Monitor
 dn: cn=Entries,cn=Statistics,cn=Monitor
 structuralObjectClass: monitorCounterObject
 monitorCounter: 612248
 entryDN: cn=Entries,cn=Statistics,cn=Monitor
 subschemaSubentry: cn=Subschema
 hasSubordinates: FALSE

20.4.10. Threads

It contains the maximum number of threads enabled at startup and the current backload.

e.g.

 # Max, Threads, Monitor
 dn: cn=Max,cn=Threads,cn=Monitor
 structuralObjectClass: monitoredObject
 monitoredInfo: 16
 entryDN: cn=Max,cn=Threads,cn=Monitor
 subschemaSubentry: cn=Subschema
 hasSubordinates: FALSE

20.4.11. Time

It contains two child entries with the start time and the current time of the server.

e.g.

Start time:

 dn: cn=Start,cn=Time,cn=Monitor

OpenLDAP Software 2.5 Administrator's Guide

193

 structuralObjectClass: monitoredObject
 monitorTimestamp: 20061205124040Z
 entryDN: cn=Start,cn=Time,cn=Monitor
 subschemaSubentry: cn=Subschema
 hasSubordinates: FALSE

Current time:

 dn: cn=Current,cn=Time,cn=Monitor
 structuralObjectClass: monitoredObject
 monitorTimestamp: 20061207120624Z
 entryDN: cn=Current,cn=Time,cn=Monitor
 subschemaSubentry: cn=Subschema
 hasSubordinates: FALSE

20.4.12. TLS

Currently empty.

20.4.13. Waiters

It contains the number of current read waiters.

e.g.

Read waiters:

 dn: cn=Read,cn=Waiters,cn=Monitor
 structuralObjectClass: monitorCounterObject
 monitorCounter: 7
 entryDN: cn=Read,cn=Waiters,cn=Monitor
 subschemaSubentry: cn=Subschema
 hasSubordinates: FALSE

Write waiters:

 dn: cn=Write,cn=Waiters,cn=Monitor
 structuralObjectClass: monitorCounterObject
 monitorCounter: 0
 entryDN: cn=Write,cn=Waiters,cn=Monitor
 subschemaSubentry: cn=Subschema
 hasSubordinates: FALSE

Add new monitored things here and discuss, referencing man pages and present examples

OpenLDAP Software 2.5 Administrator's Guide

194

21. Load Balancing with lloadd
As covered in the Replication chapter, replication is a fundamental requirement for delivering a resilient
enterprise deployment. As such there's a need for an LDAPv3 capable load balancer to spread the load
between the various directory instances.

lloadd(8) provides the capability to distribute LDAP v3 requests between a set of running slapd instances. It
can run as a standalone daemon lloadd, or as an embedded module running inside of slapd.

21.1. Overview

lloadd(8) was designed to handle LDAP loads. It is protocol-aware and can balance LDAP loads on a
per-operation basis rather than on a per-connection basis.

lloadd(8) distributes the load across a set of slapd instances. The client connects to the load balancer instance
which forwards the request to one of the servers and returns the response back to the client.

21.2. When to use the OpenLDAP load balancer

In general, the OpenLDAP load balancer spreads the load across configured backend servers. It does not
perform so-called intelligent routing. It does not understand semantics behind the operations being performed
by the clients.

More considerations:

Servers are indistinguishable with respect to data contents. The exact same copy of data
resides on every server.

♦

Clients do not require 'sticky' sessions.♦
The sequence of operations isn't important. For example, read after update isn't required by
the client.

♦

If your client can handle both connection pooling and load distribution then it's preferable to
lloadd.

♦

Clients that require a consistent session (e.g. do writes), the best practice is to let them set up
a direct session to one of the providers. The read-only clients are still free to use lloadd.

♦

2.6 release of lloadd will include sticky sessions (coherency).♦

21.3. Runtime configurations

It deploys in one of two ways:

Standalone daemon: lloadd1.
Loaded into the slapd daemon as a module: lloadd.la2.

It is recommended to run with the balancer module embedded in slapd because dynamic configuration
(cn=config) and the monitor backend are then available.

Sample load balancer scenario:

195

Figure: Load balancer sample scenario

The LDAP client submits an LDAP operation to the load balancer daemon.1.
The load balancer forwards the request to one of the backend instances in its pool of servers.2.
The backend slapd server processes the request and returns the response to the load balancer instance.3.
The load balancer returns the response to the client. The client's unaware that it's connecting to a load
balancer instead of slapd.

4.

21.4. Build Notes

To build the load balancer from source, follow the instructions in the A Quick-Start Guide substituting the
following commands:

To configure as standalone daemon:
./configure --enable-balancer=yes

1.

To configure as embedded module to slapd:
./configure --enable-modules --enable-balancer=mod

2.

21.5. Sample Runtime

To run embedded as lloadd module:
slapd [-h URLs] [-f lloadd-config-file] [-u user] [-g group]

the startup is the same as starting the slapd daemon.♦
URLs is for slapd management. The load balancer's listener URLs set in the configuration file
or node. (more later)

♦

1.

To run as standalone daemon:
lloadd [-h URLs] [-f lloadd-config-file] [-u user] [-g group]

Other than a different daemon name, running standalone has the same options as starting
slapd .

♦

-h URLs specify the lloadd's interface directly, there is no management interface.♦

2.

For a complete list of options, checkout the man page lloadd.8

21.6. Configuring load balancer

21.6.1. Common configuration options

Many of the same configuration options as slapd. For complete list, check the lloadd(5) man page.

 Edit the slapd.conf or cn=config configuration file.

OpenLDAP Software 2.5 Administrator's Guide

196

To configure your working lloadd(8) you need to make the following changes to your configuration file:

include core.schema (embedded only)1.
TLSShareSlapdCTX { on | off }2.
Other common TLS slapd options3.
Setup argsfile/pidfile4.
Setup moduleload path (embedded mode only)5.
moduleload lloadd.la6.
loglevel, threads, ACL's7.
backend lload begin lloadd specific backend configurations8.
listen ldap://:PORT Specify listen port for load balancer9.
feature proxyauthz Use the proxy authZ control to forward client's identity10.
io-threads INT specify the number of threads to use for the connection manager. The default is 1 and
this is typically adequate for up to 16 CPU cores

11.

21.6.2. Sample backend config

Sample setup config for load balancer running in front of four slapd instances.

backend lload

The Load Balancer manages its own sockets, so they have to be separate
from the ones slapd manages (as specified with the -h "URLS" option at
startup).
listen ldap://:1389

Enable authorization tracking
feature proxyauthz

Specify the number of threads to use for the connection manager. The default is 1 and this is typically adequate for up to 16 CPU cores.
The value should be set to a power of 2:
io-threads 2

If TLS is configured above, use the same context for the Load Balancer
If using cn=config, this can be set to false and different settings
can be used for the Load Balancer
TLSShareSlapdCTX true

Authentication and other options (timeouts) shared between backends.
bindconf bindmethod=simple
 binddn=dc=example,dc=com credentials=secret
 network-timeout=5
 tls_cacert="/usr/local/etc/openldap/ca.crt"
 tls_cert="/usr/local/etc/openldap/host.crt"
 tls_key="/usr/local/etc/openldap/host.pem"

List the backends we should relay operations to, they all have to be
practically indistinguishable. Only TLS settings can be specified on
a per-backend basis.

backend-server uri=ldap://ldaphost01 starttls=critical retry=5000
 max-pending-ops=50 conn-max-pending=10
 numconns=10 bindconns=5
backend-server uri=ldap://ldaphost02 starttls=critical retry=5000
 max-pending-ops=50 conn-max-pending=10
 numconns=10 bindconns=5

OpenLDAP Software 2.5 Administrator's Guide

197

backend-server uri=ldap://ldaphost03 starttls=critical retry=5000
 max-pending-ops=50 conn-max-pending=10
 numconns=10 bindconns=5
backend-server uri=ldap://ldaphost04 starttls=critical retry=5000
 max-pending-ops=50 conn-max-pending=10
 numconns=10 bindconns=5

###
Monitor database
###
database monitor

OpenLDAP Software 2.5 Administrator's Guide

198

22. Tuning
This is perhaps one of the most important chapters in the guide, because if you have not tuned slapd(8)
correctly or grasped how to design your directory and environment, you can expect very poor performance.

Reading, understanding and experimenting using the instructions and information in the following sections,
will enable you to fully understand how to tailor your directory server to your specific requirements.

It should be noted that the following information has been collected over time from our community based
FAQ. So obviously the benefit of this real world experience and advice should be of great value to the reader.

22.1. Performance Factors

Various factors can play a part in how your directory performs on your chosen hardware and environment. We
will attempt to discuss these here.

22.1.1. Memory

Scale your cache to use available memory and increase system memory if you can.

22.1.2. Disks

Use fast filesystems, and conduct your own testing to see which filesystem types perform best with your
workload. (On our own Linux testing, EXT2 and JFS tend to provide better write performance than everything
else, including newer filesystems like EXT4, BTRFS, etc.)

Use fast subsystems. Put each database on separate disks.

22.1.3. Network Topology

http://www.openldap.org/faq/data/cache/363.html

Drawing here.

22.1.4. Directory Layout Design

Reference to other sections and good/bad drawing here.

22.1.5. Expected Usage

Discussion.

22.2. Indexes

22.2.1. Understanding how a search works

If you're searching on a filter that has been indexed, then the search reads the index and pulls exactly the
entries that are referenced by the index. If the filter term has not been indexed, then the search must read every

199

single entry in the target scope and test to see if each entry matches the filter. Obviously indexing can save a
lot of work when it's used correctly.

In back-mdb, indexes can only track a certain number of entries per key (by default that number is 2^16 =
65536). If more entries' values hash to this key, some/all of them will have to be represented by a range of
candidates, making the index less useful over time as deletions cannot usually be tracked accurately.

22.2.2. What to index

As a general rule, to make any use of indexes, you must set up an equality index on objectClass:

 index objectClass eq

Then you should create indices to match the actual filter terms used in search queries.

 index cn,sn,givenname,mail eq

Each attribute index can be tuned further by selecting the set of index types to generate. For example,
substring and approximate search for organizations (o) may make little sense (and isn't like done very often).
And searching for userPassword likely makes no sense what so ever.

General rule: don't go overboard with indexes. Unused indexes must be maintained and hence can only slow
things down.

See slapd.conf(5) and slapdindex(8) for more information

22.2.3. Presence indexing

If your client application uses presence filters and if the target attribute exists on the majority of entries in
your target scope, then all of those entries are going to be read anyway, because they are valid members of the
result set. In a subtree where 100% of the entries are going to contain the same attributes, the presence index
does absolutely NOTHING to benefit the search, because 100% of the entries match that presence filter. As an
example, setting a presence index on objectClass provides no benefit since it is present on every entry.

So the resource cost of generating the index is a complete waste of CPU time, disk, and memory. Don't do it
unless you know that it will be used, and that the attribute in question occurs very infrequently in the target
data.

Almost no applications use presence filters in their search queries. Presence indexing is pointless when the
target attribute exists on the majority of entries in the database. In most LDAP deployments, presence
indexing should not be done, it's just wasted overhead.

See the Logging section below on what to watch out for if you have a frequently searched for attribute that is
unindexed.

22.2.4. Equality indexing

Similarly to presence indexes, equality indexes are most useful if the values searched for are uncommon. Most
OpenLDAP indexes work by hashing the normalised value and using the hash as the key. Hashing behaviour
depends on the matching rule syntax, some matching rules also implement indexers that help speed up

OpenLDAP Software 2.5 Administrator's Guide

200

inequality (lower than, ...) queries.

Check the documentation and other parts of this guide if some indexes are mandatory - e.g. to enable
replication, it is expected you index certain operational attributes, likewise if you rely on filters in ACL
processing.

Approximate indexes are usually identical to equality indexes unless a matching rule explicitly implements it.
As of OpenLDAP 2.5, only directoryStringApproxMatch and IA5StringApproxMatch matchers and indexers
are implemented, currently using soundex or metaphone, with metaphone being the default.

22.2.5. Substring indexing

Substring indexes work on splitting the value into short chunks and then indexing those in a similar way to
how equality index does. The storage space needed to store all of this data is analogous to the amount of data
being indexed, which makes the indexes extremely heavy-handed in most scenarios.

22.3. Logging

22.3.1. What log level to use

The default of loglevel stats (256) is really the best bet. There's a corollary to this when problems *do* arise,
don't try to trace them using syslog. Use the debug flag instead, and capture slapd's stderr output. syslog is too
slow for debug tracing, and it's inherently lossy - it will throw away messages when it can't keep up. See
slapd.conf(5) or slapd-config(5) for more information on how to configure the loglevel.

Contrary to popular belief, loglevel 0 is not ideal for production as you won't be able to track when problems
first arise.

22.3.2. What to watch out for

The most common message you'll see that you should pay attention to is:

 "<= mdb_equality_candidates: (foo) index_param failed (18)"

That means that some application tried to use an equality filter (foo=<somevalue>) and attribute foo does not
have an equality index. If you see a lot of these messages, you should add the index. If you see one every
month or so, it may be acceptable to ignore it.

The default syslog level is stats (256) which logs the basic parameters of each request; it usually produces 1-3
lines of output. On Solaris and systems that only provide synchronous syslog, you may want to turn it off
completely, but usually you want to leave it enabled so that you'll be able to see index messages whenever
they arise. On Linux you can configure syslogd to run asynchronously, in which case the performance hit for
moderate syslog traffic pretty much disappears.

22.3.3. Improving throughput

You can improve logging performance on some systems by configuring syslog not to sync the file system
with every write (man syslogd/syslog.conf). In Linux, you can prepend the log file name with a "-" in
syslog.conf. For example, if you are using the default LOCAL4 logging you could try:

OpenLDAP Software 2.5 Administrator's Guide

201

 # LDAP logs
 LOCAL4.* -/var/log/ldap

For syslog-ng, add or modify the following line in syslog-ng.conf:

 options { sync(n); };

where n is the number of lines which will be buffered before a write.

22.4. slapd(8) Threads

slapd(8) can process requests via a configurable number of threads, which in turn affects the in/out rate of
connections.

This value should generally be a function of the number of "real" cores on the system, for example on a server
with 2 CPUs with one core each, set this to 8, or 4 threads per real core. This is a "read" maximized value.
The more threads that are configured per core, the slower slapd(8) responds for "read" operations. On the flip
side, it appears to handle write operations faster in a heavy write/low read scenario.

The upper bound for good read performance appears to be 16 threads (which also happens to be the default
setting).

OpenLDAP Software 2.5 Administrator's Guide

202

23. Troubleshooting
If you're having trouble using OpenLDAP, get onto the OpenLDAP-Software mailing list, or:

Browse the list archives at http://www.openldap.org/lists/#archives•
Search the FAQ at http://www.openldap.org/faq/•
Search the Issue Tracking System at http://www.openldap.org/its/•

Chances are the problem has been solved and explained in detail many times before.

23.1. User or Software errors?

More often than not, an error is caused by a configuration problem or a misunderstanding of what you are
trying to implement and/or achieve.

We will now attempt to discuss common user errors.

23.2. Checklist

The following checklist can help track down your problem. Please try to use if before posting to the list, or in
the rare circumstances of reporting a bug.

Use the slaptest tool to verify configurations before starting slapd1.

Verify that slapd is listening to the specified port(s) (389 and 636, generally) before trying the
ldapsearch

2.

Can you issue an ldapsearch?3.

If not, have you enabled complex ACLs without fully understanding them?4.

Do you have a system wide LDAP setting pointing to the wrong LDAP Directory?5.

Are you using TLS?6.

Have your certificates expired?7.

23.3. OpenLDAP Bugs

Sometimes you may encounter an actual OpenLDAP bug, in which case please visit our Issue Tracking
system http://www.openldap.org/its/ and report it. However, make sure it's not already a known bug or a
common user problem.

bugs in historic versions of OpenLDAP will not be considered;•
bugs in released versions that are no longer present in the Git master branch, either because they have
been fixed or because they no longer apply, will not be considered as well;

•

203

http://www.openldap.org/lists/#archives
http://www.openldap.org/faq/
http://www.openldap.org/its/
http://www.openldap.org/its/

bugs in distributions of OpenLDAP software that are not related to the software as provided by
OpenLDAP will not be considered; in those cases please refer to the distributor.

•

Note: Our Issue Tracking system is NOT for OpenLDAP Support, please join our mailing Lists:
http://www.openldap.org/lists/ for that.

The information you should provide in your bug report is discussed in our FAQ-O-MATIC at
http://www.openldap.org/faq/data/cache/59.html

23.4. 3rd party software error

The OpenLDAP Project only supports OpenLDAP software.

You may however seek commercial support (http://www.openldap.org/support/) or join the general LDAP
forum for non-commercial discussions and information relating to LDAP at:
http://www.umich.edu/~dirsvcs/ldap/mailinglist.html

23.5. How to contact the OpenLDAP Project

Mailing Lists: http://www.openldap.org/lists/•
Project: http://www.openldap.org/project/•
Issue Tracking: http://www.openldap.org/its/•

23.6. How to present your problem

23.7. Debugging slapd(8)

After reading through the above sections and before e-mailing the OpenLDAP lists, you might want to try out
some of the following to track down the cause of your problems:

A loglevel of stats (256) is generally a good first loglevel to use for getting information useful to list
members on issues. This is the default loglevel if none is configured.

•

Running slapd -d -1 can often track down fairly simple issues, such as missing schemas and incorrect
file permissions for the slapd user to things like certs

•

Check your logs for errors, as discussed at http://www.openldap.org/faq/data/cache/358.html•

23.8. Commercial Support

The firms listed at http://www.openldap.org/support/ offer technical support services catering to OpenLDAP
community.

The listing of any given firm should not be viewed as an endorsement or recommendation of any kind, nor as
otherwise indicating there exists a business relationship or an affiliation between any listed firm and the
OpenLDAP Foundation or the OpenLDAP Project or its contributors.

OpenLDAP Software 2.5 Administrator's Guide

204

http://www.openldap.org/lists/
http://www.openldap.org/faq/data/cache/59.html
http://www.openldap.org/support/
http://www.umich.edu/~dirsvcs/ldap/mailinglist.html
http://www.openldap.org/lists/
http://www.openldap.org/project/
http://www.openldap.org/its/
http://www.openldap.org/faq/data/cache/358.html
http://www.openldap.org/support/

A. Changes Since Previous Release
The following sections attempt to summarize the new features and changes in OpenLDAP software since the
2.4.x release and the OpenLDAP Admin Guide.

A.1. New Guide Sections

In order to make the Admin Guide more thorough and cover the majority of questions asked on the
OpenLDAP mailing lists and scenarios discussed there, we have added the following new sections:

When should I use LDAP?•
When should I not use LDAP?•
LDAP vs RDBMS•
Access Control•
Backends•
Overlays•
Replication•
Maintenance•
Monitoring•
Tuning•
Troubleshooting•
Changes Since Previous Release•
Upgrading from 2.4.x•
Common errors encountered when using OpenLDAP Software•
Recommended OpenLDAP Software Dependency Versions•
Real World OpenLDAP Deployments and Examples•
OpenLDAP Software Contributions•
Configuration File Examples•
LDAP Result Codes•
Glossary•

Also, the table of contents is now 3 levels deep to ease navigation.

A.2. New Features and Enhancements in 2.5

A.2.1. Better cn=config functionality

A.2.2. Better cn=schema functionality

A.2.3. More sophisticated Syncrepl configurations

A.2.4. Replicating slapd Configuration (syncrepl and cn=config)

A.2.5. More extensive TLS configuration control

205

A.2.6. Performance enhancements

A.2.7. New overlays

A.2.8. New features in existing Overlays

A.2.9. New features in slapd

A.2.10. New features in libldap

A.2.11. New clients, tools and tool enhancements

A.2.12. New build options

A.3. Obsolete Features Removed From 2.5

These features were strongly deprecated in 2.4 and removed in 2.5.

A.3.1. back-bdb and back-hdb

back-bdb and back-hdb were significantly slower than back-mdb and required significant tuning of multiple
parameters to maximize performance. back-mdb requires no tuning and provides all the functionality
previously provided via back-bdb and back-hdb.

OpenLDAP Software 2.5 Administrator's Guide

206

B. Upgrading from 2.4.x
The following sections attempt to document the steps you will need to take in order to upgrade from the latest
2.4.x OpenLDAP version.

The normal upgrade procedure, as discussed in the Maintenance section, should of course still be followed
prior to doing any of this.

B.1. cn=config olc* attributes

The olcMirrorMode attribute has been renamed to olcMultiProvider. Existing configurations will continue to
work with the old parameter name, but it is advised to update to the new name as a part of the upgrade
process.

B.2. ppolicy overlay

The overlay now implements version 10 of the ppolicy draft in full. This includes the notion of a password
administrator where applicable (as determined by having a manage permission to the userPassword attribute)
and skips certain processing when there is no valid policy in effect or where the operation is initiated by a
password administrator. Many attributes are now tagged with NO-USER-MODIFICATION in the schema,
requiring the use of relax control to modify them.

In OpenLDAP 2.4 the slapo-ppolicy(5) overlay relied on a separate schema file to be included for it to
function. This schema is now implemented internally in the slapo-ppolicy module. When upgrading
slapd.conf(5) deployments the include statement for the schema must be removed. For slapd-config(5)
deployments, the config database must be exported via slapcat and the old ppolicy schema removed from the
export. The resulting config database can then be imported.

B.3. unique overlay

In OpenLDAP 2.4 it was possible to bypass slapo-unique(5) checks by using the manageDSAIT control as a
part of the request. This is no longer possible. To achieve the same functionality the relax control must be
used instead, and the binding identity must have manage permissions on the entry being modified.

With OpenLDAP 2.5 a new keyword "serialize" has been added as a part of the unique_uri configuration
parameter. This will cause all write operations requiring uniqueness to be serialized so as to avoid the scenario
where multiple concurrent updates can prevent uniqueness from being enforced. See the slapo-unique(5) man
page for further details.

B.4. ldap and meta backends

Several deprecated configuration directives for slapd-ldap(5) and slapd-meta(5) have been removed.
Configurations using those directive must be updated to use supported directives prior to upgrade. See the
slapd-ldap(5) and slapd-meta(5) man pages from OpenLDAP 2.4 for a list of deprecated directives.

207

B.5. shell backend

This deprecated backend has been removed from OpenLDAP 2.5. Configurations making use of this backend
must remove it prior to upgrade. The slapd-sock(5) backend is recommended as an alternative.

B.6. perl and sql backends

The slapd-perl(5) and slapd-sql(5) backends are now deprecated and no longer automatically enabled with the
--enable-backends configure flag.

B.7. hdb and bdb backends

The Berkeley DB based slapd-bdb and slapd-hdb backends have been removed from OpenLDAP 2.5.
Deployments making use of these backends must migrate their configurations to use slapd-mdb(5) prior to
upgrade.

B.8. mdb backend

It is advised to determine if the new slapd-mdb(5) idlexp backend directive and/or the multival database
directive should be added to the OpenLDAP 2.5 configuration as well as the existing global sortvals directive.
Configuring any of these items requires that existing databases be reloaded for them to take full effect. This
can be done separately from the overall upgrade from OpenLDAP 2.4 to OpenLDAP 2.5 if desired.

B.9. Client utility changes

The deprecated "-h" (host) and "-p" (port) options for the ldap client utilities have been removed. It is required
to use a properly formatted LDAP URI with the "-H" option in OpenLDAP 2.5 and later.

OpenLDAP Software 2.5 Administrator's Guide

208

C. Common errors encountered when using
OpenLDAP Software
The following sections attempt to summarize the most common causes of LDAP errors when using
OpenLDAP

C.1. Common causes of LDAP errors

C.1.1. ldap_*: Can't contact LDAP server

The Can't contact LDAP server error is usually returned when the LDAP server cannot be contacted. This
may occur for many reasons:

the LDAP server is not running; this can be checked by running, for example,•

 telnet <host> <port>

replacing <host> and <port> with the hostname and the port the server is supposed to listen on.

the client has not been instructed to contact a running server; with OpenLDAP command-line tools
this is accomplished by providing the -H switch, whose argument is a valid LDAP url corresponding
to the interface the server is supposed to be listening on.

•

C.1.2. ldap_*: No such object

The no such object error is generally returned when the target DN of the operation cannot be located. This
section details reasons common to all operations. You should also look for answers specific to the operation
(as indicated in the error message).

The most common reason for this error is non-existence of the named object. First, check for typos.

Also note that, by default, a new directory server holds no objects (except for a few system entries). So, if you
are setting up a new directory server and get this message, it may simply be that you have yet to add the object
you are trying to locate.

The error commonly occurs because a DN was not specified and a default was not properly configured.

If you have a suffix specified in slapd.conf eg.

 suffix "dc=example,dc=com"

You should use

 ldapsearch -b 'dc=example,dc=com' '(cn=jane*)'

to tell it where to start the search.

The -b should be specified for all LDAP commands unless you have an ldap.conf(5) default configured.

209

See ldapsearch(1), ldapmodify(1)

Also, slapadd(8) and its ancillary programs are very strict about the syntax of the LDIF file.

Some liberties in the LDIF file may result in an apparently successful creation of the database, but accessing
some parts of it may be difficult.

One known common error in database creation is putting a blank line before the first entry in the LDIF file.
There must be no leading blank lines in the LDIF file.

It is generally recommended that ldapadd(1) be used instead of slapadd(8) when adding new entries your
directory. slapadd(8) should be used to bulk load entries known to be valid.

Another cause of this message is a referral ({SECT:Constructing a Distributed Directory Service}}) entry to
an unpopulated directory.

Either remove the referral, or add a single record with the referral base DN to the empty directory.

This error may also occur when slapd is unable to access the contents of its database because of file
permission problems. For instance, on a Red Hat Linux system, slapd runs as user 'ldap'. When slapadd is run
as root to create a database from scratch, the contents of /var/lib/ldap are created with user and group root
and with permission 600, making the contents inaccessible to the slapd server.

C.1.3. ldap_*: Can't chase referral

This is caused by the line

 referral ldap://root.openldap.org

In slapd.conf, it was provided as an example for how to use referrals in the original file. However if your
machine is not permanently connected to the Internet, it will fail to find the server, and hence produce an error
message.

To resolve, just place a # in front of line and restart slapd or point it to an available ldap server.

See also: ldapadd(1), ldapmodify(1) and slapd.conf(5)

C.1.4. ldap_*: server is unwilling to perform

slapd will return an unwilling to perform error if the backend holding the target entry does not support the
given operation.

The password backend is only willing to perform searches. It will return an unwilling to perform error for all
other operations.

C.1.5. ldap_*: Insufficient access

This error occurs when server denies the operation due to insufficient access. This is usually caused by
binding to a DN with insufficient privileges (or binding anonymously) to perform the operation.

OpenLDAP Software 2.5 Administrator's Guide

210

You can bind as the rootdn/rootpw specified in slapd.conf(5) to gain full access. Otherwise, you must bind to
an entry which has been granted the appropriate rights through access controls.

C.1.6. ldap_*: Invalid DN syntax

The target (or other) DN of the operation is invalid. This implies that either the string representation of the DN
is not in the required form, one of the types in the attribute value assertions is not defined, or one of the values
in the attribute value assertions does not conform to the appropriate syntax.

C.1.7. ldap_*: Referral hop limit exceeded

This error generally occurs when the client chases a referral which refers itself back to a server it already
contacted. The server responds as it did before and the client loops. This loop is detected when the hop limit is
exceeded.

This is most often caused through misconfiguration of the server's default referral. The default referral should
not be itself:

That is, on ldap://myldap/ the default referral should not be ldap://myldap/ (or any hostname/ip which is
equivalent to myldap).

C.1.8. ldap_*: operations error

In some versions of slapd(8), operationsError was returned instead of other.

C.1.9. ldap_*: other error

The other result code indicates an internal error has occurred. While the additional information provided with
the result code might provide some hint as to the problem, often one will need to consult the server's log files.

C.1.10. ldap_add/modify: Invalid syntax

This error is reported when a value of an attribute does not conform to syntax restrictions. Additional
information is commonly provided stating which value of which attribute was found to be invalid. Double
check this value and other values (the server will only report the first error it finds).

Common causes include:

extraneous whitespace (especially trailing whitespace)•
improperly encoded characters (LDAPv3 uses UTF-8 encoded Unicode)•
empty values (few syntaxes allow empty values)•

For certain syntax, like OBJECT IDENTIFIER (OID), this error can indicate that the OID descriptor (a "short
name") provided is unrecognized. For instance, this error is returned if the objectClass value provided is
unrecognized.

C.1.11. ldap_add/modify: Object class violation

This error is returned with the entry to be added or the entry as modified violates the object class schema
rules. Normally additional information is returned the error detailing the violation. Some of these are detailed

OpenLDAP Software 2.5 Administrator's Guide

211

below.

Violations related to the entry's attributes:

 Attribute not allowed

A provided attribute is not allowed by the entry's object class(es).

 Missing required attribute

An attribute required by the entry's object class(es) was not provided.

Violations related to the entry's class(es):

 Entry has no objectClass attribute

The entry did not state which object classes it belonged to.

 Unrecognized objectClass

One (or more) of the listed objectClass values is not recognized.

 No structural object class provided

None of the listed objectClass values is structural.

 Invalid structural object class chain

Two or more structural objectClass values are not in same structural object class chain.

 Structural object class modification

Modify operation attempts to change the structural class of the entry.

 Instantiation of abstract objectClass.

An abstract class is not subordinate to any listed structural or auxiliary class.

 Invalid structural object class

Other structural object class problem.

 No structuralObjectClass operational attribute

This is commonly returned when a shadow server is provided an entry which does not contain the
structuralObjectClass operational attribute.

Note that the above error messages as well as the above answer assumes basic knowledge of LDAP/X.500
schema.

OpenLDAP Software 2.5 Administrator's Guide

212

C.1.12. ldap_add: No such object

The "ldap_add: No such object" error is commonly returned if parent of the entry being added does not exist.
Add the parent entry first...

For example, if you are adding "cn=bob,dc=domain,dc=com" and you get:

 ldap_add: No such object

The entry "dc=domain,dc=com" likely doesn't exist. You can use ldapsearch to see if does exist:

 ldapsearch -b 'dc=domain,dc=com' -s base '(objectclass=*)'

If it doesn't, add it. See A Quick-Start Guide for assistance.

Note: if the entry being added is the same as database suffix, it's parent isn't required. i.e.: if your suffix is
"dc=domain,dc=com", "dc=com" doesn't need to exist to add "dc=domain,dc=com".

This error will also occur if you try to add any entry that the server is not configured to hold.

For example, if your database suffix is "dc=domain,dc=com" and you attempt to add "dc=domain2,dc=com",
"dc=com", "dc=domain,dc=org", "o=domain,c=us", or an other DN in the "dc=domain,dc=com" subtree, the
server will return a "No such object" (or referral) error.

slapd(8) will generally return "no global superior knowledge" as additional information indicating its return
noSuchObject instead of a referral as the server is not configured with knowledge of a global superior server.

C.1.13. ldap add: invalid structural object class chain

This particular error refers to the rule about STRUCTURAL objectclasses, which states that an object is of
one STRUCTURAL class, the structural class of the object. The object is said to belong to this class, zero or
more auxiliaries classes, and their super classes.

While all of these classes are commonly listed in the objectClass attribute of the entry, one of these classes is
the structural object class of the entry. Thus, it is OK for an objectClass attribute to contain inetOrgPerson,
organizationalPerson, and person because they inherit one from another to form a single super class chain.
That is, inetOrgPerson SUPs organizationPerson SUPs person. On the other hand, it is invalid for both
inetOrgPerson and account to be listed in objectClass as inetOrgPerson and account are not part of the same
super class chain (unless some other class is also listed with is a subclass of both).

To resolve this problem, one must determine which class will better serve structural object class for the entry,
adding this class to the objectClass attribute (if not already present), and remove any other structural class
from the entry's objectClass attribute which is not a super class of the structural object class.

Which object class is better depends on the particulars of the situation. One generally should consult the
documentation for the applications one is using for help in making the determination.

OpenLDAP Software 2.5 Administrator's Guide

213

C.1.14. ldap_add: no structuralObjectClass operational attribute

ldapadd(1) may error:

 adding new entry "uid=XXX,ou=People,o=campus,c=ru"
 ldap_add: Internal (implementation specific) error (80)
 additional info: no structuralObjectClass operational attribute

when slapd(8) cannot determine, based upon the contents of the objectClass attribute, what the structural class
of the object should be.

C.1.15. ldap_add/modify/rename: Naming violation

OpenLDAP's slapd checks for naming attributes and distinguished values consistency, according to RFC
4512.

Naming attributes are those attributeTypes that appear in an entry's RDN; distinguished values are the values
of the naming attributes that appear in an entry's RDN, e.g, in

 cn=Someone+mail=someone@example.com,dc=example,dc=com

the naming attributes are cn and mail, and the distinguished values are Someone and someone@example.com.

OpenLDAP's slapd checks for consistency when:

adding an entry•
modifying an entry, if the values of the naming attributes are changed•
renaming an entry, if the RDN of the entry changes•

Possible causes of error are:

the naming attributes are not present in the entry; for example:•

 dn: dc=example,dc=com
 objectClass: organization
 o: Example
 # note: "dc: example" is missing

the naming attributes are present in the entry, but in the attributeType definition they are marked as:
collective♦
operational♦
obsolete♦

•

the naming attributes are present in the entry, but the distinguished values are not; for example:•

 dn: dc=example,dc=com
 objectClass: domain
 dc: foobar
 # note: "dc" is present, but the value is not "example"

the naming attributes are present in the entry, with the distinguished values, but the naming attributes:
do not have an equality field, so equality cannot be asserted♦
the matching rule is not supported (yet)♦

•

OpenLDAP Software 2.5 Administrator's Guide

214

the matching rule is not appropriate♦
the given distinguished values do not comply with their syntax•
other errors occurred during the validation/normalization/match process; this is a catchall: look at
previous logs for details in case none of the above apply to your case.

•

In any case, make sure that the attributeType definition for the naming attributes contains an appropriate
EQUALITY field; or that of the superior, if they are defined based on a superior attributeType (look at the
SUP field). See RFC 4512 for details.

C.1.16. ldap_add/delete/modify/rename: no global superior knowledge

If the target entry name places is not within any of the databases the server is configured to hold and the
server has no knowledge of a global superior, the server will indicate it is unwilling to perform the operation
and provide the text "no global superior knowledge" as additional text.

Likely the entry name is incorrect, or the server is not properly configured to hold the named entry, or, in
distributed directory environments, a default referral was not configured.

C.1.17. ldap_bind: Insufficient access

Current versions of slapd(8) requires that clients have authentication permission to attribute types used for
authentication purposes before accessing them to perform the bind operation. As all bind operations are done
anonymously (regardless of previous bind success), the auth access must be granted to anonymous.

In the example ACL below grants the following access:

to anonymous users:
permission to authenticate using values of userPassword♦

•

to authenticated users:
permission to update (but not read) their userPassword♦
permission to read any object excepting values of userPassword♦

•

All other access is denied.

 access to attr=userPassword
 by self =w
 by anonymous auth
 access *
 by self write
 by users read

C.1.18. ldap_bind: Invalid credentials

The error usually occurs when the credentials (password) provided does not match the userPassword held in
entry you are binding to.

The error can also occur when the bind DN specified is not known to the server.

Check both! In addition to the cases mentioned above you should check if the server denied access to
userPassword on selected parts of the directory. In fact, slapd always returns "Invalid credentials" in case of
failed bind, regardless of the failure reason, since other return codes could reveal the validity of the user's

OpenLDAP Software 2.5 Administrator's Guide

215

name.

To debug access rules defined in slapd.conf, add "ACL" to log level.

C.1.19. ldap_bind: Protocol error

There error is generally occurs when the LDAP version requested by the client is not supported by the server.

The OpenLDAP Software 2.x server, by default, only accepts version 3 LDAP Bind requests but can be
configured to accept a version 2 LDAP Bind request.

Note: The 2.x server expects LDAPv3 [RFC4510] to be used when the client requests version 3 and expects a
limited LDAPv3 variant (basically, LDAPv3 syntax and semantics in an LDAPv2 PDUs) to be used when
version 2 is expected.

This variant is also sometimes referred to as LDAPv2+, but differs from the U-Mich LDAP variant in a
number of ways.

C.1.20. ldap_modify: cannot modify object class

This message is commonly returned when attempting to modify the objectClass attribute in a manner
inconsistent with the LDAP/X.500 information model. In particular, it commonly occurs when one tries to
change the structure of the object from one class to another, for instance, trying to change an 'apple' into a
'pear' or a 'fruit' into a 'pear'.

Such changes are disallowed by the slapd(8) in accordance with LDAP and X.500 restrictions.

C.1.21. ldap_sasl_interactive_bind_s: ...

If you intended to bind using a DN and password and get an error from ldap_sasl_interactive_bind_s, you
likely forgot to provide a '-x' option to the command. By default, SASL authentication is used. '-x' is necessary
to select "simple" authentication.

C.1.22. ldap_sasl_interactive_bind_s: No such Object

This indicates that LDAP SASL authentication function could not read the Root DSE. The error will occur
when the server doesn't provide a root DSE. This may be due to access controls.

C.1.23. ldap_sasl_interactive_bind_s: No such attribute

This indicates that LDAP SASL authentication function could read the Root DSE but it contained no
supportedSASLMechanism attribute.

The supportedSASLmechanism attribute lists mechanisms currently available. The list may be empty because
none of the supported mechanisms are currently available. For example, EXTERNAL is listed only if the
client has established its identity by authenticating at a lower level (e.g. TLS).

Note: the attribute may not be visible due to access controls

OpenLDAP Software 2.5 Administrator's Guide

216

Note: SASL bind is the default for all OpenLDAP tools, e.g. ldapsearch(1), ldapmodify(1). To force use of
"simple" bind, use the "-x" option. Use of "simple" bind is not recommended unless one has adequate
confidentiality protection in place (e.g. TLS/SSL, IPSEC).

C.1.24. ldap_sasl_interactive_bind_s: Unknown authentication method

This indicates that none of the SASL authentication supported by the server are supported by the client, or that
they are too weak or otherwise inappropriate for use by the client. Note that the default security options
disallows the use of certain mechanisms such as ANONYMOUS and PLAIN (without TLS).

Note: SASL bind is the default for all OpenLDAP tools. To force use of "simple" bind, use the "-x" option.
Use of "simple" bind is not recommended unless one has adequate confidentiality protection in place (e.g.
TLS/SSL, IPSEC).

C.1.25. ldap_sasl_interactive_bind_s: Local error (82)

Apparently not having forward and reverse DNS entries for the LDAP server can result in this error.

C.1.26. ldap_search: Partial results and referral received

This error is returned with the server responses to an LDAPv2 search query with both results (zero or more
matched entries) and references (referrals to other servers). See also: ldapsearch(1).

If the updatedn on the replica does not exist, a referral will be returned. It may do this as well if the ACL
needs tweaking.

C.1.27. ldap_start_tls: Operations error

ldapsearch(1) and other tools will return

 ldap_start_tls: Operations error (1)
 additional info: TLS already started

When the user (though command line options and/or ldap.conf(5)) has requested TLS (SSL) be started twice.
For instance, when specifying both "-H ldaps://server.do.main" and "-ZZ".

C.2. Other Errors

C.2.1. ber_get_next on fd X failed errno=34 (Numerical result out of range)

This slapd error generally indicates that the client sent a message that exceeded an administrative limit. See
sockbuf_max_incoming and sockbuf_max_incoming_auth configuration directives in slapd.conf(5).

C.2.2. ber_get_next on fd X failed errno=11 (Resource temporarily
unavailable)

This message is not indicative of abnormal behavior or error. It simply means that expected data is not yet
available from the resource, in this context, a network socket. slapd(8) will process the data once it does

OpenLDAP Software 2.5 Administrator's Guide

217

becomes available.

C.2.3. daemon: socket() failed errno=97 (Address family not supported)

This message indicates that the operating system does not support one of the (protocol) address families which
slapd(8) was configured to support. Most commonly, this occurs when slapd(8) was configured to support
IPv6 yet the operating system kernel wasn't. In such cases, the message can be ignored.

C.2.4. GSSAPI: gss_acquire_cred: Miscellaneous failure; Permission denied;

This message means that slapd is not running as root and, thus, it cannot get its Kerberos 5 key from the
keytab, usually file /etc/krb5.keytab.

A keytab file is used to store keys that are to be used by services or daemons that are started at boot time. It is
very important that these secrets are kept beyond reach of intruders.

That's why the default keytab file is owned by root and protected from being read by others. Do not mess with
these permissions, build a different keytab file for slapd instead, and make sure it is owned by the user that
slapd runs as.

To do this, start kadmin, and enter the following commands:

 addprinc -randkey ldap/ldap.example.com@EXAMPLE.COM
 ktadd -k /etc/openldap/ldap.keytab ldap/ldap.example.com@EXAMPLE.COM

Then, on the shell, do:

 chown ldap:ldap /etc/openldap/ldap.keytab
 chmod 600 /etc/openldap/ldap.keytab

Now you have to tell slapd (well, actually tell the gssapi library in Kerberos 5 that is invoked by Cyrus SASL)
where to find the new keytab. You do this by setting the environment variable KRB5_KTNAME like this:

 export KRB5_KTNAME="FILE:/etc/openldap/ldap.keytab"

Set that environment variable on the slapd start script (Red Hat users might find /etc/sysconfig/ldap a perfect
place).

This only works if you are using MIT kerberos. It doesn't work with Heimdal, for instance.

In Heimdal there is a function gsskrb5_register_acceptor_identity() that sets the path of the keytab file you
want to use. In Cyrus SASL 2 you can add

 keytab: /path/to/file

to your application's SASL config file to use this feature. This only works with Heimdal.

C.2.5. access from unknown denied

This related to TCP wrappers. See hosts_access(5) for more information. in the log file: "access from
unknown denied" This related to TCP wrappers. See hosts_access(5) for more information. for example: add

OpenLDAP Software 2.5 Administrator's Guide

218

the line "slapd: .hosts.you.want.to.allow" in /etc/hosts.allow to get rid of the error.

C.2.6. ldap_read: want=# error=Resource temporarily unavailable

This message occurs normally. It means that pending data is not yet available from the resource, a network
socket. slapd(8) will process the data once it becomes available.

C.2.7. `make test' fails

Some times, `make test' fails at the very first test with an obscure message like

 make test
 make[1]: Entering directory `/ldap_files/openldap-2.5.0/tests'
 make[2]: Entering directory `/ldap_files/openldap-2.5.0/tests'
 Initiating LDAP tests for MDB...
 Cleaning up test run directory leftover from previous run.
 Running ./scripts/all...
 >>>>> Executing all LDAP tests for mdb
 >>>>> Starting test000-rootdse ...
 running defines.sh
 Starting slapd on TCP/IP port 9011...
 Using ldapsearch to retrieve the root DSE...
 Waiting 5 seconds for slapd to start...
 ./scripts/test000-rootdse: line 40: 10607 Segmentation fault $SLAPD -f $CONF1 -h $URI1 -d $LVL $TIMING >$LOG1 2>&1
 Waiting 5 seconds for slapd to start...
 Waiting 5 seconds for slapd to start...
 Waiting 5 seconds for slapd to start...
 Waiting 5 seconds for slapd to start...
 Waiting 5 seconds for slapd to start...
 ./scripts/test000-rootdse: kill: (10607) - No such pid
 ldap_sasl_bind_s: Can't contact LDAP server (-1)
 >>>>> Test failed
 >>>>> ./scripts/test000-rootdse failed (exit 1)
 make[2]: *** [mdb-yes] Error 1
 make[2]: Leaving directory `/ldap_files/openldap-2.5.0/tests'
 make[1]: *** [test] Error 2
 make[1]: Leaving directory `/ldap_files/openldap-2.5.0/tests'
 make: *** [test] Error 2

or so. Usually, the five lines

Waiting 5 seconds for slapd to start...

indicate that slapd didn't start at all.

In tests/testrun/slapd.1.log there is a full log of what slapd wrote while trying to start. The log level can be
increased by setting the environment variable SLAPD_DEBUG to the corresponding value; see loglevel in
slapd.conf(5) for the meaning of log levels.

A typical reason for this behavior is a runtime link problem, i.e. slapd cannot find some dynamic libraries it
was linked against. Try running ldd(1) on slapd (for those architectures that support runtime linking).

There might well be other reasons; the contents of the log file should help clarifying them.

OpenLDAP Software 2.5 Administrator's Guide

219

Tests that fire up multiple instances of slapd typically log to tests/testrun/slapd.<n>.log, with a distinct <n>
for each instance of slapd; list tests/testrun/ for possible values of <n>.

C.2.8. ldap_*: Internal (implementation specific) error (80) - additional info:
entry index delete failed

This seems to be related with wrong ownership of the MDB's dir (/var/lib/ldap) and files. The files must be
owned by the user that slapd runs as.

 chown -R ldap:ldap /var/lib/ldap

fixes it in Debian

C.2.9. ldap_sasl_interactive_bind_s: Can't contact LDAP server (-1)

Using SASL, when a client contacts LDAP server, the slapd service dies immediately and client gets an error :

 SASL/GSSAPI authentication started ldap_sasl_interactive_bind_s: Can't contact LDAP server (-1)

Then check the slapd service, it stopped.

OpenLDAP Software 2.5 Administrator's Guide

220

D. Recommended OpenLDAP Software Dependency
Versions
This appendix details the recommended versions of the software that OpenLDAP depends on.

Please read the Prerequisite software section for more information on the following software dependencies.

D.1. Dependency Versions

Table 8.5: OpenLDAP Software Dependency Versions

Feature Software Version
 Transport Layer Security:

 OpenSSL 1.1.1+

 GnuTLS 3.6.0+

 Simple Authentication and Security Layer Cyrus SASL 2.1.27+

 LDAP Load Balancer libevent 2.1+

Threads: POSIX pthreads Version

221

https://www.openssl.org/
https://gnutls.org/
https://www.cyrusimap.org/sasl/
https://libevent.org/

OpenLDAP Software 2.5 Administrator's Guide

222

E. Real World OpenLDAP Deployments and Examples
Examples and discussions

223

OpenLDAP Software 2.5 Administrator's Guide

224

F. OpenLDAP Software Contributions
The following sections attempt to summarize the various contributions in OpenLDAP software, as found in
openldap_src/contrib

F.1. Client APIs

Intro and discuss

F.1.1. ldapc++

Intro and discuss

F.1.2. ldaptcl

Intro and discuss

F.2. Overlays

F.2.1. acl

Plugins that implement access rules. Currently only posixGroup, which implements access control based on
posixGroup membership.

F.2.2. addpartial

Treat Add requests as Modify requests if the entry exists.

F.2.3. allop

Return operational attributes for root DSE even when not requested, since some clients expect this.

F.2.4. autogroup

Automated updates of group memberships.

F.2.5. comp_match

Component Matching rules (RFC 3687).

F.2.6. denyop

Deny selected operations, returning unwillingToPerform.

F.2.7. dsaschema

Permit loading DSA-specific schema, including operational attrs.

225

F.2.8. lastmod

Track the time of the last write operation to a database.

F.2.9. nops

Remove null operations, e.g. changing a value to same as before.

F.2.10. nssov

Handle NSS lookup requests through a local Unix Domain socket.

F.2.11. passwd

Support additional password mechanisms.

F.2.12. proxyOld

Proxy Authorization compatibility with obsolete internet-draft.

F.2.13. smbk5pwd

Make the PasswordModify Extended Operation update Kerberos keys and Samba password hashes as well as
userPassword.

F.2.14. trace

Trace overlay invocation.

F.2.15. usn

Maintain usnCreated and usnChanged attrs similar to Microsoft AD.

F.3. Tools

Intro and discuss

F.3.1. Statistic Logging

statslog

F.4. SLAPI Plugins

Intro and discuss

OpenLDAP Software 2.5 Administrator's Guide

226

F.4.1. addrdnvalues

More

OpenLDAP Software 2.5 Administrator's Guide

227

OpenLDAP Software 2.5 Administrator's Guide

228

G. Configuration File Examples

G.1. slapd.conf

G.2. ldap.conf

G.3. a-n-other.conf

229

OpenLDAP Software 2.5 Administrator's Guide

230

H. LDAP Result Codes
For the purposes of this guide, we have incorporated the standard LDAP result codes from Appendix A. LDAP
Result Codes of RFC4511, a copy of which can be found in doc/rfc of the OpenLDAP source code.

We have expanded the description of each error in relation to the OpenLDAP toolsets. LDAP extensions may
introduce extension-specific result codes, which are not part of RFC4511. OpenLDAP returns the result codes
related to extensions it implements. Their meaning is documented in the extension they are related to.

H.1. Non-Error Result Codes

These result codes (called "non-error" result codes) do not indicate an error condition:

 success (0),
 compareFalse (5),
 compareTrue (6),
 referral (10), and
 saslBindInProgress (14).

The success, compareTrue, and compareFalse result codes indicate successful completion (and, hence, are
referred to as "successful" result codes).

The referral and saslBindInProgress result codes indicate the client needs to take additional action to
complete the operation.

H.2. Result Codes

Existing LDAP result codes are described as follows:

H.3. success (0)

Indicates the successful completion of an operation.

Note: this code is not used with the Compare operation. See compareFalse (5) and compareTrue (6).

H.4. operationsError (1)

Indicates that the operation is not properly sequenced with relation to other operations (of same or different
type).

For example, this code is returned if the client attempts to StartTLS (RFC4511 Section 4.14) while there are
other uncompleted operations or if a TLS layer was already installed.

H.5. protocolError (2)

Indicates the server received data that is not well-formed.

231

https://www.rfc-editor.org/rfc/rfc4511.txt
https://www.rfc-editor.org/rfc/rfc4511.txt

For Bind operation only, this code is also used to indicate that the server does not support the requested
protocol version.

For Extended operations only, this code is also used to indicate that the server does not support (by design or
configuration) the Extended operation associated with the requestName.

For request operations specifying multiple controls, this may be used to indicate that the server cannot ignore
the order of the controls as specified, or that the combination of the specified controls is invalid or
unspecified.

H.6. timeLimitExceeded (3)

Indicates that the time limit specified by the client was exceeded before the operation could be completed.

H.7. sizeLimitExceeded (4)

Indicates that the size limit specified by the client was exceeded before the operation could be completed.

H.8. compareFalse (5)

Indicates that the Compare operation has successfully completed and the assertion has evaluated to FALSE or
Undefined.

H.9. compareTrue (6)

Indicates that the Compare operation has successfully completed and the assertion has evaluated to TRUE.

H.10. authMethodNotSupported (7)

Indicates that the authentication method or mechanism is not supported.

H.11. strongerAuthRequired (8)

Indicates the server requires strong(er) authentication in order to complete the operation.

When used with the Notice of Disconnection operation, this code indicates that the server has detected that an
established security association between the client and server has unexpectedly failed or been compromised.

H.12. referral (10)

Indicates that a referral needs to be chased to complete the operation (see RFC4511 Section 4.1.10).

H.13. adminLimitExceeded (11)

Indicates that an administrative limit has been exceeded.

OpenLDAP Software 2.5 Administrator's Guide

232

https://www.rfc-editor.org/rfc/rfc4511.txt

H.14. unavailableCriticalExtension (12)

Indicates a critical control is unrecognized (see RFC4511 Section 4.1.11).

H.15. confidentialityRequired (13)

Indicates that data confidentiality protections are required.

H.16. saslBindInProgress (14)

Indicates the server requires the client to send a new bind request, with the same SASL mechanism, to
continue the authentication process (see RFC4511 Section 4.2).

H.17. noSuchAttribute (16)

Indicates that the named entry does not contain the specified attribute or attribute value.

H.18. undefinedAttributeType (17)

Indicates that a request field contains an unrecognized attribute description.

H.19. inappropriateMatching (18)

Indicates that an attempt was made (e.g., in an assertion) to use a matching rule not defined for the attribute
type concerned.

H.20. constraintViolation (19)

Indicates that the client supplied an attribute value that does not conform to the constraints placed upon it by
the data model.

For example, this code is returned when multiple values are supplied to an attribute that has a
SINGLE-VALUE constraint.

H.21. attributeOrValueExists (20)

Indicates that the client supplied an attribute or value to be added to an entry, but the attribute or value already
exists.

H.22. invalidAttributeSyntax (21)

Indicates that a purported attribute value does not conform to the syntax of the attribute.

H.23. noSuchObject (32)

Indicates that the object does not exist in the DIT.

OpenLDAP Software 2.5 Administrator's Guide

233

https://www.rfc-editor.org/rfc/rfc4511.txt
https://www.rfc-editor.org/rfc/rfc4511.txt

H.24. aliasProblem (33)

Indicates that an alias problem has occurred. For example, the code may used to indicate an alias has been
dereferenced that names no object.

H.25. invalidDNSyntax (34)

Indicates that an LDAPDN or RelativeLDAPDN field (e.g., search base, target entry, ModifyDN newrdn,
etc.) of a request does not conform to the required syntax or contains attribute values that do not conform to
the syntax of the attribute's type.

H.26. aliasDereferencingProblem (36)

Indicates that a problem occurred while dereferencing an alias. Typically, an alias was encountered in a
situation where it was not allowed or where access was denied.

H.27. inappropriateAuthentication (48)

Indicates the server requires the client that had attempted to bind anonymously or without supplying
credentials to provide some form of credentials.

H.28. invalidCredentials (49)

Indicates that the provided credentials (e.g., the user's name and password) are invalid.

H.29. insufficientAccessRights (50)

Indicates that the client does not have sufficient access rights to perform the operation.

H.30. busy (51)

Indicates that the server is too busy to service the operation.

H.31. unavailable (52)

Indicates that the server is shutting down or a subsystem necessary to complete the operation is offline.

H.32. unwillingToPerform (53)

Indicates that the server is unwilling to perform the operation.

H.33. loopDetect (54)

Indicates that the server has detected an internal loop (e.g., while dereferencing aliases or chaining an
operation).

OpenLDAP Software 2.5 Administrator's Guide

234

H.34. namingViolation (64)

Indicates that the entry's name violates naming restrictions.

H.35. objectClassViolation (65)

Indicates that the entry violates object class restrictions.

H.36. notAllowedOnNonLeaf (66)

Indicates that the operation is inappropriately acting upon a non-leaf entry.

H.37. notAllowedOnRDN (67)

Indicates that the operation is inappropriately attempting to remove a value that forms the entry's relative
distinguished name.

H.38. entryAlreadyExists (68)

Indicates that the request cannot be fulfilled (added, moved, or renamed) as the target entry already exists.

H.39. objectClassModsProhibited (69)

Indicates that an attempt to modify the object class(es) of an entry's 'objectClass' attribute is prohibited.

For example, this code is returned when a client attempts to modify the structural object class of an entry.

H.40. affectsMultipleDSAs (71)

Indicates that the operation cannot be performed as it would affect multiple servers (DSAs).

H.41. other (80)

Indicates the server has encountered an internal error.

OpenLDAP Software 2.5 Administrator's Guide

235

OpenLDAP Software 2.5 Administrator's Guide

236

I. Glossary

I.1. Terms

Term Definition
3DES Triple DES
ABNF Augmented Backus-Naur Form
ACDF Access Control Decision Function
ACE ASCII Compatible Encoding
ASCII American Standard Code for Information Interchange
ACID Atomicity, Consistency, Isolation, and Durability
ACI Access Control Information
ACL Access Control List
AES Advance Encryption Standard
ABI Application Binary Interface
API Application Program Interface
ASN.1 Abstract Syntax Notation - One
AVA Attribute Value Assertion
AuthcDN Authentication DN
AuthcId Authentication Identity
AuthzDN Authorization DN
AuthzId Authorization Identity
BCP Best Current Practice
BER Basic Encoding Rules
BNF Backus-Naur Form
C The C Programming Language
CA Certificate Authority
CER Canonical Encoding Rules
CLDAP Connection-less LDAP
CN Common Name
CRAM-MD5 SASL MD5 Challenge/Response Authentication Mechanism
CRL Certificate Revocation List
DAP Directory Access Protocol
DC Domain Component
DER Distinguished Encoding Rules
DES Data Encryption Standard
DIB Directory Information Base
DIGEST-MD5 SASL Digest MD5 Authentication Mechanism
DISP Directory Information Shadowing Protocol
DIT Directory Information Tree
DNS Domain Name System

237

DN Distinguished Name
DOP Directory Operational Binding Management Protocol
DSAIT DSA Information Tree
DSA Directory System Agent
DSE DSA-specific Entry
DSP Directory System Protocol
DS Draft Standard
DUA Directory User Agent
EXTERNAL SASL External Authentication Mechanism
FAQ Frequently Asked Questions
FTP File Transfer Protocol
FYI For Your Information
GSER Generic String Encoding Rules
GSS-API Generic Security Service Application Program Interface
GSSAPI SASL Kerberos V GSS-API Authentication Mechanism
I-D Internet-Draft
IA5 International Alphabet 5
IDNA Internationalized Domain Names in Applications
IDN Internationalized Domain Name
ID Identifier
IDL Index Data Lookups
IP Internet Protocol
IPC Inter-process communication
IPsec Internet Protocol Security
IPv4 Internet Protocol, version 4
IPv6 Internet Protocol, version 6
ITS Issue Tracking System
JPEG Joint Photographic Experts Group
Kerberos Kerberos Authentication Service
LBER Lightweight BER
LDAP Lightweight Directory Access Protocol
LDAP Sync LDAP Content Synchronization
LDAPv3 LDAP, version 3
LDIF LDAP Data Interchange Format
LMDB Lightning Memory-Mapped Database
MD5 Message Digest 5
MDB Memory-Mapped Database (Backend)
MIB Management Information Base
MODDN Modify DN
MODRDN Modify RDN
NSSR Non-specific Subordinate Reference
OID Object Identifier

OpenLDAP Software 2.5 Administrator's Guide

238

OSI Open Systems Interconnect
OTP One Time Password
PDU Protocol Data Unit
PEM Privacy Enhanced eMail
PEN Private Enterprise Number
PKCS Public Key Cryptosystem
PKI Public Key Infrastructure
PKIX Public Key Infrastructure (X.509)
PLAIN SASL Plaintext Password Authentication Mechanism
POSIX Portable Operating System Interface
PS Proposed Standard
RDN Relative Distinguished Name
RFC Request for Comments
RPC Remote Procedure Call
RXER Robust XML Encoding Rules
SASL Simple Authentication and Security Layer
SDF Simple Document Format
SDSE Shadowed DSE
SHA1 Secure Hash Algorithm 1
SLAPD Standalone LDAP Daemon
SLURPD Standalone LDAP Update Replication Daemon
SMTP Simple Mail Transfer Protocol
SNMP Simple Network Management Protocol
SQL Structured Query Language
SRP Secure Remote Password
SSF Security Strength Factor
SSL Secure Socket Layer
STD Internet Standard
TCP Transmission Control Protocol
TLS Transport Layer Security
UCS Universal Multiple-Octet Coded Character Set
UDP User Datagram Protocol
UID User Identifier
Unicode The Unicode Standard
UNIX Unix
URI Uniform Resource Identifier
URL Uniform Resource Locator
URN Uniform Resource Name
UTF-8 8-bit UCS/Unicode Transformation Format
UTR Unicode Technical Report
UUID Universally Unique Identifier

OpenLDAP Software 2.5 Administrator's Guide

239

WWW World Wide Web
X.500 X.500 Directory Services
X.509 X.509 Public Key and Attribute Certificate Frameworks
XED XML Enabled Directory
XER XML Encoding Rules
XML Extensible Markup Language
syncrepl LDAP Sync-based Replication
lloadd LDAP Load Balancer

I.2. Related Organizations

Name Long Jump

ANSI American National
Standards Institute https://www.ansi.org/

BSI British Standards
Institute https://www.bsigroup.com/en-GB/

COSINE

Co-operation and
Open Systems
Interconnection in
Europe

CPAN Comprehensive Perl
Archive Network https://www.cpan.org/

Cyrus Project Cyrus https://www.cyrusimap.org/

FSF Free Software
Foundation https://www.fsf.org/

GNU GNU Not Unix
Project https://www.gnu.org/

IAB Internet
Architecture Board https://www.iab.org/

IANA Internet Assigned
Numbers Authority https://www.iana.org/

IEEE

Institute of
Electrical and
Electronics
Engineers

https://www.ieee.org

IESG Internet Engineering
Steering Group https://www.ietf.org/about/groups/iesg/

IETF Internet Engineering
Task Force https://www.ietf.org/

IRTF Internet Research
Task Force https://irtf.org/

ISO
International
Standards
Organisation

https://www.iso.org/

ISOC Internet Society https://www.internetsociety.org/
ITU https://www.itu.int/

OpenLDAP Software 2.5 Administrator's Guide

240

https://www.ansi.org/
https://www.ansi.org/
https://www.bsigroup.com/en-GB/
https://www.bsigroup.com/en-GB/
https://www.cpan.org/
https://www.cpan.org/
https://www.cyrusimap.org/
https://www.cyrusimap.org/
https://www.fsf.org/
https://www.fsf.org/
https://www.gnu.org/
https://www.gnu.org/
https://www.iab.org/
https://www.iab.org/
https://www.iana.org/
https://www.iana.org/
https://www.ieee.org
https://www.ieee.org
https://www.ietf.org/about/groups/iesg/
https://www.ietf.org/about/groups/iesg/
https://www.ietf.org/
https://www.ietf.org/
https://irtf.org/
https://irtf.org/
https://www.iso.org/
https://www.iso.org/
https://www.internetsociety.org/
https://www.internetsociety.org/
https://www.itu.int/
https://www.itu.int/

International
Telecommunication
Union

OLF OpenLDAP
Foundation https://www.openldap.org/foundation/

OLP OpenLDAP Project https://www.openldap.org/project/
OpenSSL OpenSSL Project https://www.openssl.org/
RFC Editor RFC Editor https://www.rfc-editor.org/
Oracle Oracle Corporation https://www.oracle.com/

UM University of
Michigan https://www.umich.edu/

UMLDAP
University of
Michigan LDAP
Team

https://web.archive.org/web/20160302011357/http://www.umich.edu/~dirsvcs/ldap/ldap.html

I.3. Related Products

Name Jump
SDF https://metacpan.org/release/sdf
Cyrus https://www.cyrusimap.org/
Cyrus SASL https://www.cyrusimap.org/sasl/
Git https://git-scm.com/
GNU https://www.gnu.org/software/
GnuTLS https://gnutls.org/
Heimdal https://github.com/heimdal/
JLDAP https://www.openldap.org/jldap/
libevent https://libevent.org/
MIT Kerberos https://web.mit.edu/kerberos/
OpenLDAP https://www.openldap.org/
OpenLDAP
FAQ https://www.openldap.org/faq/

OpenLDAP
ITS https://bugs.openldap.org/

OpenLDAP
Software https://www.openldap.org/software/

OpenSSL https://www.openssl.org/
Perl https://www.perl.org/
UMLDAP https://web.archive.org/web/20160302011357/http://www.umich.edu/~dirsvcs/ldap/ldap.html

I.4. References

Reference Document Status Jump
UM-GUIDE The SLAPD and

SLURPD
Administrators
Guide

O https://web.archive.org/web/20170809071245/http://www.umich.edu/~dirsvcs/ldap/doc/guides/slapd/guide.pdf

OpenLDAP Software 2.5 Administrator's Guide

241

https://www.openldap.org/foundation/
https://www.openldap.org/foundation/
https://www.openldap.org/project/
https://www.openldap.org/project/
https://www.openssl.org/
https://www.openssl.org/
https://www.rfc-editor.org/
https://www.rfc-editor.org/
https://www.oracle.com/
https://www.oracle.com/
https://www.umich.edu/
https://www.umich.edu/
https://web.archive.org/web/20160302011357/http://www.umich.edu/~dirsvcs/ldap/ldap.html
https://web.archive.org/web/20160302011357/http://www.umich.edu/~dirsvcs/ldap/ldap.html
https://metacpan.org/release/sdf
https://metacpan.org/release/sdf
https://www.cyrusimap.org/
https://www.cyrusimap.org/
https://www.cyrusimap.org/sasl/
https://www.cyrusimap.org/sasl/
https://git-scm.com/
https://git-scm.com/
https://www.gnu.org/software/
https://www.gnu.org/software/
https://gnutls.org/
https://gnutls.org/
https://github.com/heimdal/
https://github.com/heimdal/
https://www.openldap.org/jldap/
https://www.openldap.org/jldap/
https://libevent.org/
https://libevent.org/
https://web.mit.edu/kerberos/
https://web.mit.edu/kerberos/
https://www.openldap.org/
https://www.openldap.org/
https://www.openldap.org/faq/
https://www.openldap.org/faq/
https://www.openldap.org/faq/
https://bugs.openldap.org/
https://bugs.openldap.org/
https://bugs.openldap.org/
https://www.openldap.org/software/
https://www.openldap.org/software/
https://www.openldap.org/software/
https://www.openssl.org/
https://www.openssl.org/
https://www.perl.org/
https://www.perl.org/
https://web.archive.org/web/20160302011357/http://www.umich.edu/~dirsvcs/ldap/ldap.html
https://web.archive.org/web/20160302011357/http://www.umich.edu/~dirsvcs/ldap/ldap.html
https://web.archive.org/web/20170809071245/http://www.umich.edu/~dirsvcs/ldap/doc/guides/slapd/guide.pdf
https://web.archive.org/web/20170809071245/http://www.umich.edu/~dirsvcs/ldap/doc/guides/slapd/guide.pdf

RFC2079

Definition of an
X.500 Attribute
Type and an
Object Class to
Hold Uniform
Resource
Identifiers

PS https://www.rfc-editor.org/rfc/rfc2079.txt

RFC2296 Use of Language
Codes in LDAP PS https://www.rfc-editor.org/rfc/rfc2296.txt

RFC2307

An Approach for
Using LDAP as a
Network
Information
Service

X https://www.rfc-editor.org/rfc/rfc2307.txt

RFC2589

Lightweight
Directory Access
Protocol (v3):
Extensions for
Dynamic
Directory
Services

PS https://www.rfc-editor.org/rfc/rfc2589.txt

RFC2798

Definition of the
inetOrgPerson
LDAP Object
Class

I https://www.rfc-editor.org/rfc/rfc2798.txt

RFC2831

Using Digest
Authentication as
a SASL
Mechanism

PS https://www.rfc-editor.org/rfc/rfc2831.txt

RFC2849
The LDAP Data
Interchange
Format

PS https://www.rfc-editor.org/rfc/rfc2849.txt

RFC3088 OpenLDAP Root
Service X https://www.rfc-editor.org/rfc/rfc3088.txt

RFC3296

Named
Subordinate
References in
LDAP

PS https://www.rfc-editor.org/rfc/rfc3296.txt

RFC3384

Lightweight
Directory Access
Protocol (version
3) Replication
Requirements

I https://www.rfc-editor.org/rfc/rfc3384.txt

RFC3494 Lightweight
Directory Access
Protocol version
2 (LDAPv2) to
Historic Status

I https://www.rfc-editor.org/rfc/rfc3494.txt

OpenLDAP Software 2.5 Administrator's Guide

242

https://www.rfc-editor.org/rfc/rfc2079.txt
https://www.rfc-editor.org/rfc/rfc2079.txt
https://www.rfc-editor.org/rfc/rfc2296.txt
https://www.rfc-editor.org/rfc/rfc2296.txt
https://www.rfc-editor.org/rfc/rfc2307.txt
https://www.rfc-editor.org/rfc/rfc2307.txt
https://www.rfc-editor.org/rfc/rfc2589.txt
https://www.rfc-editor.org/rfc/rfc2589.txt
https://www.rfc-editor.org/rfc/rfc2798.txt
https://www.rfc-editor.org/rfc/rfc2798.txt
https://www.rfc-editor.org/rfc/rfc2831.txt
https://www.rfc-editor.org/rfc/rfc2831.txt
https://www.rfc-editor.org/rfc/rfc2849.txt
https://www.rfc-editor.org/rfc/rfc2849.txt
https://www.rfc-editor.org/rfc/rfc3088.txt
https://www.rfc-editor.org/rfc/rfc3088.txt
https://www.rfc-editor.org/rfc/rfc3296.txt
https://www.rfc-editor.org/rfc/rfc3296.txt
https://www.rfc-editor.org/rfc/rfc3384.txt
https://www.rfc-editor.org/rfc/rfc3384.txt
https://www.rfc-editor.org/rfc/rfc3494.txt
https://www.rfc-editor.org/rfc/rfc3494.txt

RFC4013

SASLprep:
Stringprep
Profile for User
Names and
Passwords

PS https://www.rfc-editor.org/rfc/rfc4013.txt

RFC4346

The Transport
Layer Security
(TLS) Protocol,
Version 1.1

PS https://www.rfc-editor.org/rfc/rfc4346.txt

RFC4422

Simple
Authentication
and Security
Layer (SASL)

PS https://www.rfc-editor.org/rfc/rfc4422.txt

RFC4510

Lightweight
Directory Access
Protocol
(LDAP):
Technical
Specification
Roadmap

PS https://www.rfc-editor.org/rfc/rfc4510.txt

RFC4511

Lightweight
Directory Access
Protocol
(LDAP): The
Protocol

PS https://www.rfc-editor.org/rfc/rfc4511.txt

RFC4512

Lightweight
Directory Access
Protocol
(LDAP):
Directory
Information
Models

PS https://www.rfc-editor.org/rfc/rfc4512.txt

RFC4513

Lightweight
Directory Access
Protocol
(LDAP):
Authentication
Methods and
Security
Mechanisms

PS https://www.rfc-editor.org/rfc/rfc4513.txt

RFC4514

Lightweight
Directory Access
Protocol
(LDAP): String
Representation of
Distinguished
Names

PS https://www.rfc-editor.org/rfc/rfc4514.txt

RFC4515 Lightweight
Directory Access

PS https://www.rfc-editor.org/rfc/rfc4515.txt

OpenLDAP Software 2.5 Administrator's Guide

243

https://www.rfc-editor.org/rfc/rfc4013.txt
https://www.rfc-editor.org/rfc/rfc4013.txt
https://www.rfc-editor.org/rfc/rfc4346.txt
https://www.rfc-editor.org/rfc/rfc4346.txt
https://www.rfc-editor.org/rfc/rfc4422.txt
https://www.rfc-editor.org/rfc/rfc4422.txt
https://www.rfc-editor.org/rfc/rfc4510.txt
https://www.rfc-editor.org/rfc/rfc4510.txt
https://www.rfc-editor.org/rfc/rfc4511.txt
https://www.rfc-editor.org/rfc/rfc4511.txt
https://www.rfc-editor.org/rfc/rfc4512.txt
https://www.rfc-editor.org/rfc/rfc4512.txt
https://www.rfc-editor.org/rfc/rfc4513.txt
https://www.rfc-editor.org/rfc/rfc4513.txt
https://www.rfc-editor.org/rfc/rfc4514.txt
https://www.rfc-editor.org/rfc/rfc4514.txt
https://www.rfc-editor.org/rfc/rfc4515.txt
https://www.rfc-editor.org/rfc/rfc4515.txt

Protocol
(LDAP): String
Representation of
Search Filters

RFC4516

Lightweight
Directory Access
Protocol
(LDAP):
Uniform
Resource Locator

PS https://www.rfc-editor.org/rfc/rfc4516.txt

RFC4517

Lightweight
Directory Access
Protocol
(LDAP):
Syntaxes and
Matching Rules

PS https://www.rfc-editor.org/rfc/rfc4517.txt

RFC4518

Lightweight
Directory Access
Protocol
(LDAP):
Internationalized
String
Preparation

PS https://www.rfc-editor.org/rfc/rfc4518.txt

RFC4519

Lightweight
Directory Access
Protocol
(LDAP): Schema
for User
Applications

PS https://www.rfc-editor.org/rfc/rfc4519.txt

RFC4520
IANA
Considerations
for LDAP

BCP https://www.rfc-editor.org/rfc/rfc4520.txt

RFC4533

The Lightweight
Directory Access
Protocol (LDAP)
Content
Synchronization
Operation

X https://www.rfc-editor.org/rfc/rfc4533.txt

Chu-LDAPI
Using LDAP
Over IPC
Mechanisms

ID https://tools.ietf.org/html/draft-chu-ldap-ldapi-00

OpenLDAP Software 2.5 Administrator's Guide

244

https://www.rfc-editor.org/rfc/rfc4516.txt
https://www.rfc-editor.org/rfc/rfc4516.txt
https://www.rfc-editor.org/rfc/rfc4517.txt
https://www.rfc-editor.org/rfc/rfc4517.txt
https://www.rfc-editor.org/rfc/rfc4518.txt
https://www.rfc-editor.org/rfc/rfc4518.txt
https://www.rfc-editor.org/rfc/rfc4519.txt
https://www.rfc-editor.org/rfc/rfc4519.txt
https://www.rfc-editor.org/rfc/rfc4520.txt
https://www.rfc-editor.org/rfc/rfc4520.txt
https://www.rfc-editor.org/rfc/rfc4533.txt
https://www.rfc-editor.org/rfc/rfc4533.txt
https://tools.ietf.org/html/draft-chu-ldap-ldapi-00
https://tools.ietf.org/html/draft-chu-ldap-ldapi-00

J. Generic configure Instructions
Basic Installation
==================

 These are generic installation instructions.

 The `configure' shell script attempts to guess correct values for
various system-dependent variables used during compilation. It uses
those values to create a `Makefile' in each directory of the package.
It may also create one or more `.h' files containing system-dependent
definitions. Finally, it creates a shell script `config.status' that
you can run in the future to recreate the current configuration, a file
`config.cache' that saves the results of its tests to speed up
reconfiguring, and a file `config.log' containing compiler output
(useful mainly for debugging `configure').

 If you need to do unusual things to compile the package, please try
to figure out how `configure' could check whether to do them, and mail
diffs or instructions to the address given in the `README' so they can
be considered for the next release. If at some point `config.cache'
contains results you don't want to keep, you may remove or edit it.

 The file `configure.in' is used to create `configure' by a program
called `autoconf'. You only need `configure.in' if you want to change
it or regenerate `configure' using a newer version of `autoconf'.

The simplest way to compile this package is:

 1. `cd' to the directory containing the package's source code and type
 `./configure' to configure the package for your system. If you're
 using `csh' on an old version of System V, you might need to type
 `sh ./configure' instead to prevent `csh' from trying to execute
 `configure' itself.

 Running `configure' takes awhile. While running, it prints some
 messages telling which features it is checking for.

 2. Type `make' to compile the package.

 3. Optionally, type `make check' to run any self-tests that come with
 the package.

 4. Type `make install' to install the programs and any data files and
 documentation.

 5. You can remove the program binaries and object files from the
 source code directory by typing `make clean'. To also remove the
 files that `configure' created (so you can compile the package for
 a different kind of computer), type `make distclean'. There is
 also a `make maintainer-clean' target, but that is intended mainly
 for the package's developers. If you use it, you may have to get
 all sorts of other programs in order to regenerate files that came
 with the distribution.

Compilers and Options
=====================

 Some systems require unusual options for compilation or linking that
the `configure' script does not know about. You can give `configure'

245

initial values for variables by setting them in the environment. Using
a Bourne-compatible shell, you can do that on the command line like
this:
 CC=c89 CFLAGS=-O2 LIBS=-lposix ./configure

Or on systems that have the `env' program, you can do it like this:
 env CPPFLAGS=-I/usr/local/include LDFLAGS=-s ./configure

Compiling For Multiple Architectures
====================================

 You can compile the package for more than one kind of computer at the
same time, by placing the object files for each architecture in their
own directory. To do this, you must use a version of `make' that
supports the `VPATH' variable, such as GNU `make'. `cd' to the
directory where you want the object files and executables to go and run
the `configure' script. `configure' automatically checks for the
source code in the directory that `configure' is in and in `..'.

 If you have to use a `make' that does not supports the `VPATH'
variable, you have to compile the package for one architecture at a time
in the source code directory. After you have installed the package for
one architecture, use `make distclean' before reconfiguring for another
architecture.

Installation Names
==================

 By default, `make install' will install the package's files in
`/usr/local/bin', `/usr/local/man', etc. You can specify an
installation prefix other than `/usr/local' by giving `configure' the
option `--prefix=PATH'.

 You can specify separate installation prefixes for
architecture-specific files and architecture-independent files. If you
give `configure' the option `--exec-prefix=PATH', the package will use
PATH as the prefix for installing programs and libraries.
Documentation and other data files will still use the regular prefix.

 In addition, if you use an unusual directory layout you can give
options like `--bindir=PATH' to specify different values for particular
kinds of files. Run `configure --help' for a list of the directories
you can set and what kinds of files go in them.

 If the package supports it, you can cause programs to be installed
with an extra prefix or suffix on their names by giving `configure' the
option `--program-prefix=PREFIX' or `--program-suffix=SUFFIX'.

Optional Features
=================

 Some packages pay attention to `--enable-FEATURE' options to
`configure', where FEATURE indicates an optional part of the package.
They may also pay attention to `--with-PACKAGE' options, where PACKAGE
is something like `gnu-as' or `x' (for the X Window System). The
`README' should mention any `--enable-' and `--with-' options that the
package recognizes.

 For packages that use the X Window System, `configure' can usually
find the X include and library files automatically, but if it doesn't,
you can use the `configure' options `--x-includes=DIR' and

OpenLDAP Software 2.5 Administrator's Guide

246

`--x-libraries=DIR' to specify their locations.

Specifying the System Type
==========================

 There may be some features `configure' can not figure out
automatically, but needs to determine by the type of host the package
will run on. Usually `configure' can figure that out, but if it prints
a message saying it can not guess the host type, give it the
`--host=TYPE' option. TYPE can either be a short name for the system
type, such as `sun4', or a canonical name with three fields:
 CPU-COMPANY-SYSTEM

See the file `config.sub' for the possible values of each field. If
`config.sub' isn't included in this package, then this package doesn't
need to know the host type.

 If you are building compiler tools for cross-compiling, you can also
use the `--target=TYPE' option to select the type of system they will
produce code for and the `--build=TYPE' option to select the type of
system on which you are compiling the package.

Sharing Defaults
================

 If you want to set default values for `configure' scripts to share,
you can create a site shell script called `config.site' that gives
default values for variables like `CC', `cache_file', and `prefix'.
`configure' looks for `PREFIX/share/config.site' if it exists, then
`PREFIX/etc/config.site' if it exists. Or, you can set the
`CONFIG_SITE' environment variable to the location of the site script.
A warning: not all `configure' scripts look for a site script.

Operation Controls
==================

 `configure' recognizes the following options to control how it
operates.

`--cache-file=FILE'
 Use and save the results of the tests in FILE instead of
 `./config.cache'. Set FILE to `/dev/null' to disable caching, for
 debugging `configure'.

`--help'
 Print a summary of the options to `configure', and exit.

`--quiet'
`--silent'
`-q'
 Do not print messages saying which checks are being made. To
 suppress all normal output, redirect it to `/dev/null' (any error
 messages will still be shown).

`--srcdir=DIR'
 Look for the package's source code in directory DIR. Usually
 `configure' can determine that directory automatically.

`--version'
 Print the version of Autoconf used to generate the `configure'
 script, and exit.

OpenLDAP Software 2.5 Administrator's Guide

247

`configure' also accepts some other, not widely useful, options.

OpenLDAP Software 2.5 Administrator's Guide

248

K. OpenLDAP Software Copyright Notices

K.1. OpenLDAP Copyright Notice

Copyright 1998-2013 The OpenLDAP Foundation.
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted only as
authorized by the OpenLDAP Public License.

A copy of this license is available in file LICENSE in the top-level directory of the distribution or,
alternatively, at <http://www.OpenLDAP.org/license.html>.

OpenLDAP is a registered trademark of the OpenLDAP Foundation.

Individual files and/or contributed packages may be copyright by other parties and their use subject to
additional restrictions.

This work is derived from the University of Michigan LDAP v3.3 distribution. Information concerning this
software is available at <http://www.umich.edu/~dirsvcs/ldap/ldap.html>.

This work also contains materials derived from public sources.

Additional information about OpenLDAP software can be obtained at <http://www.OpenLDAP.org/>.

K.2. Additional Copyright Notices

Portions Copyright 1998-2013 Kurt D. Zeilenga.
Portions Copyright 1998-2006 Net Boolean Incorporated.
Portions Copyright 2001-2006 IBM Corporation.
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted only as
authorized by the OpenLDAP Public License.

Portions Copyright 1999-2008 Howard Y.H. Chu.
Portions Copyright 1999-2008 Symas Corporation.
Portions Copyright 1998-2003 Hallvard B. Furuseth.
Portions Copyright 2007-2011 Gavin Henry.
Portions Copyright 2007-2011 Suretec Systems Limited.
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that
this notice is preserved. The names of the copyright holders may not be used to endorse or promote products
derived from this software without their specific prior written permission. This software is provided ``as is''
without express or implied warranty.

249

http://www.OpenLDAP.org/license.html
http://www.umich.edu/~dirsvcs/ldap/ldap.html
http://www.OpenLDAP.org/

K.3. University of Michigan Copyright Notice

Portions Copyright 1992-1996 Regents of the University of Michigan.
All rights reserved.

Redistribution and use in source and binary forms are permitted provided that this notice is preserved and that
due credit is given to the University of Michigan at Ann Arbor. The name of the University may not be used
to endorse or promote products derived from this software without specific prior written permission. This
software is provided ``as is'' without express or implied warranty.

OpenLDAP Software 2.5 Administrator's Guide

250

L. OpenLDAP Public License
The OpenLDAP Public License
 Version 2.8, 17 August 2003

Redistribution and use of this software and associated documentation
("Software"), with or without modification, are permitted provided
that the following conditions are met:

1. Redistributions in source form must retain copyright statements
 and notices,

2. Redistributions in binary form must reproduce applicable copyright
 statements and notices, this list of conditions, and the following
 disclaimer in the documentation and/or other materials provided
 with the distribution, and

3. Redistributions must contain a verbatim copy of this document.

The OpenLDAP Foundation may revise this license from time to time.
Each revision is distinguished by a version number. You may use
this Software under terms of this license revision or under the
terms of any subsequent revision of the license.

THIS SOFTWARE IS PROVIDED BY THE OPENLDAP FOUNDATION AND ITS
CONTRIBUTORS ``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE OPENLDAP FOUNDATION, ITS CONTRIBUTORS, OR THE AUTHOR(S)
OR OWNER(S) OF THE SOFTWARE BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

The names of the authors and copyright holders must not be used in
advertising or otherwise to promote the sale, use or other dealing
in this Software without specific, written prior permission. Title
to copyright in this Software shall at all times remain with copyright
holders.

OpenLDAP is a registered trademark of the OpenLDAP Foundation.

Copyright 1999-2003 The OpenLDAP Foundation, Redwood City,
California, USA. All Rights Reserved. Permission to copy and
distribute verbatim copies of this document is granted.

Home | Catalog

© Copyright 2011-2022, OpenLDAP Foundation, info@OpenLDAP.org

251

https://www.openldap.org/
https://www.OpenLDAP.org/foundation/
mailto:info@OpenLDAP.org

	Table of Contents
	Preface
	Copyright
	Scope of this Document
	Acknowledgments
	Amendments
	About this document

	1. Introduction to OpenLDAP Directory Services
	1.1. What is a directory service?
	1.2. What is LDAP?
	1.3. When should I use LDAP?
	1.4. When should I not use LDAP?
	1.5. How does LDAP work?
	1.6. What about X.500?
	1.7. What is the difference between LDAPv2 and LDAPv3?
	1.8. LDAP vs RDBMS
	1.9. What is slapd and what can it do?
	1.10. What is lloadd and what can it do?

	2. A Quick-Start Guide
	3. The Big Picture - Configuration Choices
	3.1. Local Directory Service
	3.2. Local Directory Service with Referrals
	3.3. Replicated Directory Service
	3.4. Distributed Local Directory Service

	4. Building and Installing OpenLDAP Software
	4.1. Obtaining and Extracting the Software
	4.2. Prerequisite software
	4.2.1.
	4.2.2.
	4.2.3.
	4.2.4. Database Software
	4.2.5. Threads
	4.2.6. TCP Wrappers

	4.3. Running configure
	4.4. Building the Software
	4.5. Testing the Software
	4.6. Installing the Software

	5. Configuring slapd
	5.1. Configuration Layout
	5.2. Configuration Directives
	5.2.1. cn=config
	5.2.2. cn=module
	5.2.3. cn=schema
	5.2.4. Backend-specific Directives
	5.2.5. Database-specific Directives
	5.2.6. MDB Backend Directives
	5.2.7. MDB Database Directives

	5.3. Configuration Example
	5.4. Converting old style slapd.conf(5) file to cn=config format
	5.5. Recovering from a broken configuration
	5.5.1. Generate an ldif version of the configuration database and reload from that
	5.5.2. Modify config in-place
	5.5.3. Recover with plain back-ldif

	6. The slapd Configuration File
	6.1. Configuration File Format
	6.2. Configuration File Directives
	6.2.1. Global Directives
	6.2.2. General Backend Directives
	6.2.3. General Database Directives
	6.2.4. MDB Backend Directives
	6.2.5. MDB Database Directives

	6.3. Configuration File Example

	7. Running slapd
	7.1. Command-Line Options
	7.2. Starting slapd
	7.3. Stopping slapd

	8. Access Control
	8.1. Introduction
	8.2. Access Control via Static Configuration
	8.2.1. What to control access to
	8.2.2. Who to grant access to
	8.2.3. The access to grant
	8.2.4. Access Control Evaluation
	8.2.5. Access Control Examples

	8.3. Access Control via Dynamic Configuration
	8.3.1. What to control access to
	8.3.2. Who to grant access to
	8.3.3. The access to grant
	8.3.4. Access Control Evaluation
	8.3.5. Access Control Examples
	8.3.6. Access Control Ordering

	8.4. Access Control Common Examples
	8.4.1. Basic ACLs
	8.4.2. Matching Anonymous and Authenticated users
	8.4.3. Controlling rootdn access
	8.4.4. Managing access with Groups
	8.4.5. Granting access to a subset of attributes
	8.4.6. Allowing a user write to all entries below theirs
	8.4.7. Allowing entry creation
	8.4.8. Tips for using regular expressions in Access Control
	8.4.9. Granting and Denying access based on security strength factors (ssf)
	8.4.10. When things aren't working as expected

	8.5. Sets - Granting rights based on relationships
	8.5.1. Groups of Groups
	8.5.2. Group ACLs without DN syntax
	8.5.3. Following references

	9. Limits
	9.1. Introduction
	9.2. Soft and Hard limits
	9.3. Global Limits
	9.3.1. Special Size Limits

	9.4. Per-Database Limits
	9.4.1. Specify who the limits apply to
	9.4.2. Specify time limits
	9.4.3. Specifying size limits

	9.5. Example Limit Configurations
	9.5.1. Simple Global Limits
	9.5.2. Global Hard and Soft Limits
	9.5.3. Giving specific users larger limits
	9.5.4. Limiting who can do paged searches

	9.6. Glued/Subordinate database configurations
	9.7. Further Information

	10. Database Creation and Maintenance Tools
	10.1. Creating a database over LDAP
	10.2. Creating a database off-line
	10.2.1. The slapadd program
	10.2.2. The slapindex program
	10.2.3. The slapcat program

	10.3. The LDIF text entry format

	11. Backends
	11.1. LDAP
	11.1.1. Overview
	11.1.2. back-ldap Configuration
	11.1.3. Further Information

	11.2. LDIF
	11.2.1. Overview
	11.2.2. back-ldif Configuration
	11.2.3. Further Information

	11.3. LMDB
	11.3.1. Overview
	11.3.2. back-mdb Configuration
	11.3.3. Further Information

	11.4. Metadirectory
	11.4.1. Overview
	11.4.2. back-meta Configuration
	11.4.3. Further Information

	11.5. Monitor
	11.5.1. Overview
	11.5.2. back-monitor Configuration
	11.5.3. Further Information

	11.6. Null
	11.6.1. Overview
	11.6.2. back-null Configuration
	11.6.3. Further Information

	11.7. Passwd
	11.7.1. Overview
	11.7.2. back-passwd Configuration
	11.7.3. Further Information

	11.8. Perl
	11.8.1. Overview
	11.8.2. back-perl Configuration
	11.8.3. Further Information

	11.9. Relay
	11.9.1. Overview
	11.9.2. back-relay Configuration
	11.9.3. Further Information

	11.10. SQL
	11.10.1. Overview
	11.10.2. back-sql Configuration
	11.10.3. Further Information

	12. Overlays
	12.1. Access Logging
	12.1.1. Overview
	12.1.2. Access Logging Configuration
	12.1.3. Further Information

	12.2. Audit Logging
	12.2.1. Overview
	12.2.2. Audit Logging Configuration
	12.2.3. Further Information

	12.3. Chaining
	12.3.1. Overview
	12.3.2. Chaining Configuration
	12.3.3. Handling Chaining Errors
	12.3.4. Read-Back of Chained Modifications
	12.3.5. Further Information

	12.4. Constraints
	12.4.1. Overview
	12.4.2. Constraint Configuration
	12.4.3. Further Information

	12.5. Dynamic Directory Services
	12.5.1. Overview
	12.5.2. Dynamic Directory Service Configuration
	12.5.3. Further Information

	12.6. Dynamic Groups
	12.6.1. Overview
	12.6.2. Dynamic Group Configuration

	12.7. Dynamic Lists
	12.7.1. Overview
	12.7.2. Dynamic List Configuration
	12.7.3. Further Information

	12.8. Reverse Group Membership Maintenance
	12.8.1. Overview
	12.8.2. Member Of Configuration
	12.8.3. Further Information

	12.9. The Proxy Cache Engine
	12.9.1. Overview
	12.9.2. Proxy Cache Configuration
	12.9.3. Further Information

	12.10. Password Policies
	12.10.1. Overview
	12.10.2. Password Policy Configuration
	12.10.3. Further Information

	12.11. Referential Integrity
	12.11.1. Overview
	12.11.2. Referential Integrity Configuration
	12.11.3. Further Information

	12.12. Return Code
	12.12.1. Overview
	12.12.2. Return Code Configuration
	12.12.3. Further Information

	12.13. Rewrite/Remap
	12.13.1. Overview
	12.13.2. Rewrite/Remap Configuration
	12.13.3. Further Information

	12.14. Sync Provider
	12.14.1. Overview
	12.14.2. Sync Provider Configuration
	12.14.3. Further Information

	12.15. Translucent Proxy
	12.15.1. Overview
	12.15.2. Translucent Proxy Configuration
	12.15.3. Further Information

	12.16. Attribute Uniqueness
	12.16.1. Overview
	12.16.2. Attribute Uniqueness Configuration
	12.16.3. Further Information

	12.17. Value Sorting
	12.17.1. Overview
	12.17.2. Value Sorting Configuration
	12.17.3. Further Information

	12.18. Overlay Stacking
	12.18.1. Overview
	12.18.2. Example Scenarios

	13. Schema Specification
	13.1. Distributed Schema Files
	13.2. Extending Schema
	13.2.1. Object Identifiers
	13.2.2. Naming Elements
	13.2.3. Local schema file
	13.2.4. Attribute Type Specification
	13.2.5. Object Class Specification
	13.2.6. OID Macros

	14. Security Considerations
	14.1. Network Security
	14.1.1. Selective Listening
	14.1.2. IP Firewall
	14.1.3. TCP Wrappers

	14.2. Data Integrity and Confidentiality Protection
	14.2.1. Security Strength Factors

	14.3. Authentication Methods
	14.3.1. "simple" method
	14.3.2. SASL method

	14.4. Password Storage
	14.4.1. SSHA password storage scheme
	14.4.2. CRYPT password storage scheme
	14.4.3. MD5 password storage scheme
	14.4.4. SMD5 password storage scheme
	14.4.5. SHA password storage scheme
	14.4.6. SASL password storage scheme

	14.5. Pass-Through authentication
	14.5.1. Configuring slapd to use an authentication provider
	14.5.2. Configuring saslauthd
	14.5.3. Testing pass-through authentication

	15. Using SASL
	15.1. SASL Security Considerations
	15.2. SASL Authentication
	15.2.1. GSSAPI
	15.2.2. KERBEROS_V4
	15.2.3. DIGEST-MD5
	15.2.4. EXTERNAL
	15.2.5. Mapping Authentication Identities
	15.2.6. Direct Mapping
	15.2.7. Search-based mappings

	15.3. SASL Proxy Authorization
	15.3.1. Uses of Proxy Authorization
	15.3.2. SASL Authorization Identities
	15.3.3. Proxy Authorization Rules

	16. Using TLS
	16.1. TLS Certificates
	16.1.1. Server Certificates
	16.1.2. Client Certificates

	16.2. TLS Configuration
	16.2.1. Server Configuration
	16.2.2. Client Configuration

	17. Constructing a Distributed Directory Service
	17.1. Subordinate Knowledge Information
	17.2. Superior Knowledge Information
	17.3. The ManageDsaIT Control

	18. Replication
	18.1. Replication Technology
	18.1.1. LDAP Sync Replication

	18.2. Deployment Alternatives
	18.2.1. Delta-syncrepl replication
	18.2.2. N-Way Multi-Provider Replication
	18.2.3. Mirror mode replication
	18.2.4. Syncrepl Proxy Mode

	18.3. Configuring the different replication types
	18.3.1. Syncrepl
	18.3.2. Delta-syncrepl
	18.3.3. N-Way Multi-Provider
	18.3.4. Mirror mode
	18.3.5. Syncrepl Proxy

	19. Maintenance
	19.1. Directory Backups
	19.2. Checkpointing
	19.3. Migration

	20. Monitoring
	20.1. Monitor configuration via cn=config(5)
	20.2. Monitor configuration via slapd.conf(5)
	20.3. Accessing Monitoring Information
	20.4. Monitor Information
	20.4.1. Backends
	20.4.2. Connections
	20.4.3. Databases
	20.4.4. Listener
	20.4.5. Log
	20.4.6. Operations
	20.4.7. Overlays
	20.4.8. SASL
	20.4.9. Statistics
	20.4.10. Threads
	20.4.11. Time
	20.4.12. TLS
	20.4.13. Waiters

	21. Load Balancing with lloadd
	21.1. Overview
	21.2. When to use the OpenLDAP load balancer
	21.3. Runtime configurations
	21.4. Build Notes
	21.5. Sample Runtime
	21.6. Configuring load balancer
	21.6.1. Common configuration options
	21.6.2. Sample backend config

	22. Tuning
	22.1. Performance Factors
	22.1.1. Memory
	22.1.2. Disks
	22.1.3. Network Topology
	22.1.4. Directory Layout Design
	22.1.5. Expected Usage

	22.2. Indexes
	22.2.1. Understanding how a search works
	22.2.2. What to index
	22.2.3. Presence indexing
	22.2.4. Equality indexing
	22.2.5. Substring indexing

	22.3. Logging
	22.3.1. What log level to use
	22.3.2. What to watch out for
	22.3.3. Improving throughput

	22.4. slapd(8) Threads

	23. Troubleshooting
	23.1. User or Software errors?
	23.2. Checklist
	23.3. OpenLDAP Bugs
	23.4. 3rd party software error
	23.5. How to contact the OpenLDAP Project
	23.6. How to present your problem
	23.7. Debugging slapd(8)
	23.8. Commercial Support

	A. Changes Since Previous Release
	A.1. New Guide Sections
	A.2. New Features and Enhancements in 2.5
	A.2.1. Better cn=config functionality
	A.2.2. Better cn=schema functionality
	A.2.3. More sophisticated Syncrepl configurations
	A.2.4. Replicating slapd Configuration (syncrepl and cn=config)
	A.2.5. More extensive TLS configuration control
	A.2.6. Performance enhancements
	A.2.7. New overlays
	A.2.8. New features in existing Overlays
	A.2.9. New features in slapd
	A.2.10. New features in libldap
	A.2.11. New clients, tools and tool enhancements
	A.2.12. New build options

	A.3. Obsolete Features Removed From 2.5
	A.3.1. back-bdb and back-hdb

	B. Upgrading from 2.4.x
	B.1. cn=config olc* attributes
	B.2. ppolicy overlay
	B.3. unique overlay
	B.4. ldap and meta backends
	B.5. shell backend
	B.6. perl and sql backends
	B.7. hdb and bdb backends
	B.8. mdb backend
	B.9. Client utility changes

	C. Common errors encountered when using OpenLDAP Software
	C.1. Common causes of LDAP errors
	C.1.1. ldap_*: Can't contact LDAP server
	C.1.2. ldap_*: No such object
	C.1.3. ldap_*: Can't chase referral
	C.1.4. ldap_*: server is unwilling to perform
	C.1.5. ldap_*: Insufficient access
	C.1.6. ldap_*: Invalid DN syntax
	C.1.7. ldap_*: Referral hop limit exceeded
	C.1.8. ldap_*: operations error
	C.1.9. ldap_*: other error
	C.1.10. ldap_add/modify: Invalid syntax
	C.1.11. ldap_add/modify: Object class violation
	C.1.12. ldap_add: No such object
	C.1.13. ldap add: invalid structural object class chain
	C.1.14. ldap_add: no structuralObjectClass operational attribute
	C.1.15. ldap_add/modify/rename: Naming violation
	C.1.16. ldap_add/delete/modify/rename: no global superior knowledge
	C.1.17. ldap_bind: Insufficient access
	C.1.18. ldap_bind: Invalid credentials
	C.1.19. ldap_bind: Protocol error
	C.1.20. ldap_modify: cannot modify object class
	C.1.21. ldap_sasl_interactive_bind_s: ...
	C.1.22. ldap_sasl_interactive_bind_s: No such Object
	C.1.23. ldap_sasl_interactive_bind_s: No such attribute
	C.1.24. ldap_sasl_interactive_bind_s: Unknown authentication method
	C.1.25. ldap_sasl_interactive_bind_s: Local error (82)
	C.1.26. ldap_search: Partial results and referral received
	C.1.27. ldap_start_tls: Operations error

	C.2. Other Errors
	C.2.1. ber_get_next on fd X failed errno=34 (Numerical result out of range)
	C.2.2. ber_get_next on fd X failed errno=11 (Resource temporarily unavailable)
	C.2.3. daemon: socket() failed errno=97 (Address family not supported)
	C.2.4. GSSAPI: gss_acquire_cred: Miscellaneous failure; Permission denied;
	C.2.5. access from unknown denied
	C.2.6. ldap_read: want=# error=Resource temporarily unavailable
	C.2.7. `make test' fails
	C.2.8. ldap_*: Internal (implementation specific) error (80) - additional info: entry index delete failed
	C.2.9. ldap_sasl_interactive_bind_s: Can't contact LDAP server (-1)

	D. Recommended OpenLDAP Software Dependency Versions
	D.1. Dependency Versions

	E. Real World OpenLDAP Deployments and Examples
	F. OpenLDAP Software Contributions
	F.1. Client APIs
	F.1.1. ldapc++
	F.1.2. ldaptcl

	F.2. Overlays
	F.2.1. acl
	F.2.2. addpartial
	F.2.3. allop
	F.2.4. autogroup
	F.2.5. comp_match
	F.2.6. denyop
	F.2.7. dsaschema
	F.2.8. lastmod
	F.2.9. nops
	F.2.10. nssov
	F.2.11. passwd
	F.2.12. proxyOld
	F.2.13. smbk5pwd
	F.2.14. trace
	F.2.15. usn

	F.3. Tools
	F.3.1. Statistic Logging

	F.4. SLAPI Plugins
	F.4.1. addrdnvalues

	G. Configuration File Examples
	G.1. slapd.conf
	G.2. ldap.conf
	G.3. a-n-other.conf

	H. LDAP Result Codes
	H.1. Non-Error Result Codes
	H.2. Result Codes
	H.3. success (0)
	H.4. operationsError (1)
	H.5. protocolError (2)
	H.6. timeLimitExceeded (3)
	H.7. sizeLimitExceeded (4)
	H.8. compareFalse (5)
	H.9. compareTrue (6)
	H.10. authMethodNotSupported (7)
	H.11. strongerAuthRequired (8)
	H.12. referral (10)
	H.13. adminLimitExceeded (11)
	H.14. unavailableCriticalExtension (12)
	H.15. confidentialityRequired (13)
	H.16. saslBindInProgress (14)
	H.17. noSuchAttribute (16)
	H.18. undefinedAttributeType (17)
	H.19. inappropriateMatching (18)
	H.20. constraintViolation (19)
	H.21. attributeOrValueExists (20)
	H.22. invalidAttributeSyntax (21)
	H.23. noSuchObject (32)
	H.24. aliasProblem (33)
	H.25. invalidDNSyntax (34)
	H.26. aliasDereferencingProblem (36)
	H.27. inappropriateAuthentication (48)
	H.28. invalidCredentials (49)
	H.29. insufficientAccessRights (50)
	H.30. busy (51)
	H.31. unavailable (52)
	H.32. unwillingToPerform (53)
	H.33. loopDetect (54)
	H.34. namingViolation (64)
	H.35. objectClassViolation (65)
	H.36. notAllowedOnNonLeaf (66)
	H.37. notAllowedOnRDN (67)
	H.38. entryAlreadyExists (68)
	H.39. objectClassModsProhibited (69)
	H.40. affectsMultipleDSAs (71)
	H.41. other (80)

	I. Glossary
	I.1. Terms
	I.2. Related Organizations
	I.3. Related Products
	I.4. References

	J. Generic configure Instructions
	K. OpenLDAP Software Copyright Notices
	K.1. OpenLDAP Copyright Notice
	K.2. Additional Copyright Notices
	K.3. University of Michigan Copyright Notice

	L. OpenLDAP Public License

